4.7 Article

Biodegradation of diphenyl ether herbicide lactofen by Bacillus sp. YS-1 and characterization of two initial degrading esterases

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 806, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.151357

关键词

Diphenyl ether herbicide; Biodegradation; Phytotoxicity; RhoE; RapE; Bacillus sp; YS-1

资金

  1. National Natural Science Foundation of China [41977119, 31800095]
  2. Primary Research and Development Plan of Jiangsu Province [BE2020692]

向作者/读者索取更多资源

The study isolated a Bacillus strain capable of degrading lactofen and identified two esterases responsible for the hydrolysis of lactofen. The degradation products generated by hydrolysis showed significantly reduced toxicity to the root and seedling growth of cucumber and sorghum.
The extensive use of the diphenyl ether herbicide lactofen in recent years has caused serious environmental prob-lems. Therefore, detoxification and elimination of lactofen from the environment are urgently required. In this study, the lactofen-degrading strain Bacillus sp. YS-1 was isolated, which achieved a 97.6% degradation rate of 50 mg/L lactofen within 15 h. The ester bond of lactofen was hydrolyzed, which generated acifluorfen, and then, the nitro group was reduced to the amino group, which generated aminoacifluorfen. Finally, the amino group was acetylated, which formed acetylated aminoacifluorfen, a novel end product in the degradation of lactofen. The toxicity of acetylated aminoacifluorfen to the root and seedling growth of cucumber and sorghum was significantly decreased compared with that of lactofen. The two esterase genes rhoE and rapE, encoding two esterases responsible for lactofen hydrolysis to acifluorfen, were cloned and expressed. The amino acid sequences encoded by rhoE and rapE were 27.78% and 88.21% identical with known esterases, respectively. The optimum temperatures for RhoE and RapE degradation of lactofen were 35 degrees C and 25 degrees C, respectively, and both esterases displayed maximal activity at pH 8.0. Both RhoE and RapE prioritized the degradation of (S)-(+)-lactofen, (S)-(-)-quizalofop-ethyl, and (S)-(-)-diclofop-methyl. This study provided the resources of bacterial strain and hydrolyzing enzyme for the removal of lactofen from the environment and the bioremediation of herbicide-contaminated soil. (c) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据