4.7 Article

Enhancing sulfide mitigation via the sustainable supply of oxygen from air-nanobubbles in gravity sewers

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 808, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.152203

关键词

Gravity sewers; Sulfide mitigation; Air-nanobubbles; Sewer biofilms

资金

  1. National Natural Science Foundation of China [52000146, 51778523]
  2. China Postdoctoral Science Foundation [2020M673351]
  3. Key Research and Development Program of Shaanxi Province [2019ZDLSF06-04]

向作者/读者索取更多资源

A new method of air-nanobubble (ANB) injection was proposed for sulfide control in gravity sewers, with results showing higher efficiency compared to traditional air injection method. The reduction of sulfide by ANB injection includes both inhibition of sulfide production and oxidation of dissolved sulfide, as confirmed by microbial community analysis.
Traditional air or oxygen injection is an effective and economical mitigation strategy for sulfide control in pressure sewers, but it is not suitable for gravity sewers due to the low solubility of oxygen in water under normal atmospheric conditions. Herein, an air-nanobubble (ANB) injection method was proposed for sulfide mitigation in gravity sewers, and its sulfide control efficiency was evaluated by long-term laboratory gravity sewer reactors. The results showed that an average inhibition rate of 45.36% for sulfide was obtained when ANBs were implemented, which was 3.75 times higher than that of the traditional air injection method, revealing the effectiveness and feasibility of the ANB injection method. As suggested by microbial community analysis of sewer biofilms, the relative abundance of sulfate-reducing bacteria (SRB) decreased 40.57% while that of sulfur oxidizing bacteria (SOB) increased 215.27% in the presence of ANBs, indicating that sulfide mitigation by ANB injection included both the inhibition of sulfide production and the oxidation of dissolved sulfide. The specific cost consumption of ANB injection was 1.7 $/kg-S, which was only 6.85% of that of traditional air injection (24.8 $/kg-S), suggesting that the sustainable supply of oxygen based on ANB injection is not only environmentally but also economically beneficial for sulfide mitigation. The findings of this study may provide an efficient sulfide mitigation strategy for the management of corrosion and malodour issues in the poorly ventilated gravity sewers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据