4.7 Article

Enantioselective bioaccumulation and detoxification mechanisms of earthworms (Eisenia fetida) exposed to mandipropamid

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 796, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.149051

关键词

Enantioselectivity; Mandipropamid enantiomers; Detoxification enzymes; Transcriptome sequencing; Detoxification mechanisms

资金

  1. National Natural Science Foundation of China [42007376, 41771352, 41977134]

向作者/读者索取更多资源

This study investigated the enantioselective bioaccumulation and detoxification mechanisms of mandipropamid isomers in earthworms. The results showed that detoxification systems play an essential role in the stress response to mandipropamid exposure, with earthworms being more sensitive to S-(+)-mandipropamid than R-(-)-mandipropamid. Additionally, differentially expressed genes related to detoxification pathways were identified, providing insights for remediating chiral pollutants.
As a novel chiral amide fungicide, the enantioselective behaviors of mandipropamid in the soil environment are unclear. Furthermore, there is a need to understand the stress response mechanisms of soil organisms exposed to mandipropamid isomers. Therefore, the selective bioaccumulation of mandipropamid isomers and detoxification mechanisms of earthworms (Eisenia fetida) were investigated in this study. Our results suggested that the enantioselective bioaccumulation of mandipropamid in earthworms occurred with the preferential enrichment of S-(+)-isomer. The activities of detoxification enzymes, such as cytochrome P450 (CYP450), glutathione-Stransferases (GST), and carboxylesterase (CarE), changed significantly upon exposure to S-(+)-and R-(-)-mandipropamid (particularly for CYP450 and GST). A transcriptome analysis revealed that more differentially expressed genes (DEGs) were observed under S-(+)-isomer exposure (15,798) than those under R-(-)-isomer exposure (12,222), as compared to the control group. These DEGs were mainly enriched in bile secretion and thyroid hormone signaling pathways, which were related to the detoxification process in earthworms. Moreover, the 20 DEGs, which exhibited the most profound changes (such as CYP2 and CYP3A4) in these pathways, were screened, clustered, and observed to be mainly involved in regulating the detoxification function of earthworm cells. These results indicated that detoxification systems played an essential role in the stress response to mandipropamid exposure. Additionally, earthworms were more sensitive to the stress induced by S-(+)-mandipropamid than that induced by R-(-)-mandipropamid. This is the first study to elucidate the mandipropamid detoxification mechanism of earthworms at the enantiomer level, which can be beneficial for remediating chiral pollutants. (c) 2021 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据