4.7 Review

Formal waste treatment facilities as a source of halogenated flame retardants and organophosphate esters to the environment: A critical review with particular focus on outdoor air and soil

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 807, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.150747

关键词

Brominated flame retardants; OPFRs; WEEE; Incinerators; Atmosphere

资金

  1. University of Birmingham

向作者/读者索取更多资源

The extensive use of HFRs and OPEs has raised concerns about their adverse effects on the environment, ecology, and human health. Emissions of these chemicals occur through mechanisms such as volatilization, abrasion, and leaching, with potential impacts on outdoor air and soil in the vicinity of waste treatment facilities. Improper waste management may contribute to contamination of HFRs and OPEs in ambient air.
Extensive use of halogenated flame retardants (HFRs) and organophosphate esters (OPEs) has generated great concern about their adverse effects on environmental and ecological safety and human health. As well as emissions during use of products containing such chemicals, there are mounting concerns over emissions when such products reach the waste stream. Here, we review the available data on contamination with HFRs and OPEs arising from formal waste treatment facilities (including but not limited to e-waste recycling, landfill, and incinerators). Evidence of the transfer of HFRs and OPEs from products to the environment shows that it occurs via mechanisms such as: volatilisation, abrasion, and leaching. Higher contaminant vapour pressure, increased temperature, and elevated concentrations of HFRs and OPEs in products contribute greatly to their emissions to air, with highest emission rates usually observed in the early stages of test chamber experiments. Abrasion of particles and fibres from products is ubiquitous and likely to contribute to elevated FR concentrations in soil. Leaching to aqueous media of brominated FRs (BFRs) is likely to be a second-order process, with elevated dissolved humic matter and temperature of leaching fluids likely to facilitate such emissions. However, leaching characteristics of OPEs are less well-understood and require further investigation. Data on the occurrence of HFRs and OPEs in outdoor air and soil in the vicinity of formal e-waste treatment facilities suggests such facilities exert a considerable impact. Waste dumpsites and landfills constitute a potential source of HFRs and OPEs to soil, and improper management of waste disposal might also contribute to HFR contamination in ambient air. Current evidence suggests minimal impact of waste incineration plants on BFR contamination in outdoor air and soil, but further investigation is required to confirm this. (c) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据