4.7 Review

Surface Water and Groundwater Interactions in Salt Marshes and Their Impact on Plant Ecology and Coastal Biogeochemistry

期刊

REVIEWS OF GEOPHYSICS
卷 60, 期 1, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2021RG000740

关键词

surface water and groundwater interaction; coastal hydrology; wetland; Spartina alterniflora; climate change; blue carbon

资金

  1. National Natural Science Foundation of China [U2040204, 42141016]
  2. Natural Science Foundation of Jiangsu Province [BK20200020]

向作者/读者索取更多资源

Salt marshes are important ecosystems that provide essential ecological services, but they have been lost globally due to human activities and climate change. The interactions between tidal water and groundwater in salt marshes affect plant growth and biogeochemical exchange with coastal water. However, there are still significant knowledge gaps regarding the hydrological and ecological links in salt marshes and the challenges they face.
Salt marshes are highly productive intertidal wetlands providing important ecological services for maintaining coastal biodiversity, buffering against oceanic storms, and acting as efficient carbon sinks. However, about half of these wetlands have been lost globally due to human activities and climate change. Inundated periodically by tidal water, salt marshes are subjected to strong surface water and groundwater interactions, which affect marsh plant growth and biogeochemical exchange with coastal water. This paper reviews the state of knowledge and current approaches to quantifying marsh surface water and groundwater interactions with a focus on porewater flow and associated soil conditions in connection with plant zonation as well as carbon, nutrients, and greenhouse gas fluxes. Porewater flow and solute transport in salt marshes are primarily driven by tides with moderate regulation by rainfall, evapotranspiration and sea level rise. Tidal fluctuations play a key role in plant zonation through alteration of soil aeration and salt transport, and drive the export of significant fluxes of carbon and nutrients to coastal water. Despite recent progress, major knowledge gaps remain. Previous studies focused on flows in creek-perpendicular marsh sections and overlooked multi-scale 3D behaviors. Understanding of marsh ecological-hydrological links under combined influences of different forcing factors and boundary disturbances is lacking. Variations of surface water and groundwater temperatures affect porewater flow, soil conditions and biogeochemical exchanges, but the extent and underlying mechanisms remain unknown. We need to fill these knowledge gaps to advance understanding of salt marshes and thus enhance our ability to protect and restore them.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据