4.5 Article

Broadband micro-transient absorption spectroscopy enabled by improved lock-in amplification

期刊

REVIEW OF SCIENTIFIC INSTRUMENTS
卷 92, 期 10, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0060244

关键词

-

资金

  1. National Science Foundation (NSF) [DMR-1709934]
  2. NSF [DMR-1411008]
  3. DoD-SMART scholarship program

向作者/读者索取更多资源

This study presents a method to significantly increase the sensitivity of lock-in detection by implementing tuned RC circuits and peak detector circuits for electric pulse shaping. Benchmark measurements on samples demonstrate the effectiveness of this method in improving lock-in detection signal enhancement.
Recent breakthroughs in material development have increased the demand for characterization methods capable of probing nanoscale features on ultrafast time scales. As the sample reduces to atomically thin levels, an extremely low-level signal limits the feasibility of many experiments. Here, we present an affordable and easy-to-implement solution to expand the maximum sensitivity of lock-in detection systems used in transient absorption spectroscopy by multiple orders of magnitude. By implementation of a tuned RC circuit to the output of an avalanche photodiode, electric pulse shaping allows for vastly improved lock-in detection. Furthermore, a carefully designed peak detector circuit provides additional pulse shaping benefits, resulting in even more lock-in detection signal enhancement. We demonstrate the improvement of lock-in detection with each of these schemes by performing benchmark measurements of a white-light continuum signal and micro-transient absorption spectroscopy on a few-layer transition metal dichalcogenide sample. Our results show the practicality of ultrafast pump-probe spectroscopy for many high-sensitivity experimental schemes. Published under an exclusive license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据