4.5 Article

Tryptophan 2,3-Dioxygenase-2 in Uterine Leiomyoma: Dysregulation by MED12 Mutation Status

期刊

REPRODUCTIVE SCIENCES
卷 29, 期 3, 页码 743-749

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s43032-022-00852-y

关键词

Uterine leiomyoma; TDO2; MED12; Tryptophan; Progesterone; Kynurenine

资金

  1. NIH [P01 HD057877, P50 HD098580]

向作者/读者索取更多资源

The tryptophan metabolism-kynurenine pathway plays important roles in leiomyoma tumorigenesis. Leiomyomas expressing mut-MED12 have decreased tryptophan levels, and TDO2 is the key enzyme responsible for this reduction.
Uterine leiomyomas (fibroids) are common benign tumors in women. The tryptophan metabolism through the kynurenine pathway plays important roles in tumorigenesis in general. Leiomyomas expressing mutated mediator complex subunit 12 (mut-MED12) were reported to contain significantly decreased tryptophan levels; the underlying mechanism and the role of the tryptophan metabolism-kynurenine pathway in leiomyoma tumorigenesis, however, remain unknown. We here assessed the expression and regulation of the key enzymes that metabolize tryptophan. Among these, the tissue mRNA levels of tryptophan 2,3-dioxygenase (TDO2), the rate limiting enzyme of tryptophan metabolism through the kynurenine pathway, was 36-fold higher in mut-MED12 compared to adjacent myometrium (P < 0.0001), and 14-fold higher compared to wild type (wt)-MED12 leiomyoma (P < 0.05). The mRNA levels of other tryptophan metabolizing enzymes, IDO1 and IDO2, were low and not significantly different, suggesting that TDO2 is the key enzyme responsible for reduced tryptophan levels in mut-MED12 leiomyoma. R5020 and medroxyprogesterone acetate (MPA), two progesterone agonists, regulated TDO2 gene expression in primary myometrial and leiomyoma cells expressing wt-MED12; however, this effect was absent or blunted in leiomyoma cells expressing G44D mut-MED12. These data suggest that MED12 mutation may alter progesterone-mediated TDO2 expression in leiomyoma, leading to lower levels of tryptophan in mut-MED12 leiomyoma. This highlights that fibroids can vary widely in their response to progesterone as a result of mutation status and provides some insight for understanding the effect of tryptophan-kynurenine pathway on leiomyoma tumorigenesis and identifying targeted interventions for fibroids based on their distinct molecular signatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据