4.8 Article

Metal-organic frameworks in cooling and water desalination: Synthesis and application

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2021.111362

关键词

Metal organic frameworks (MOFs); Adsorption desalination; Cooling; Applications

向作者/读者索取更多资源

Metal-organic frameworks (MOFs) have gained significant attention and application in water capture applications due to their interesting adsorption characteristics and chemical tunability. Energy-efficient alternative desalination and cooling systems are crucial in addressing the growing energy and water demands worldwide, and sorption-based technology offers a solution to this challenge.
Energy-efficient alternative desalination and cooling systems are pivotal in addressing the incredible increase in energy and water demands worldwide. Sorption-based technology is a unique system that could help in solving the energy and water crisis and cut down the overall carbon footprint. Such systems' performance relies on the adsorption characteristics of the employed nanoporous adsorbent. Although different nanoporous materials were developed, metal-organic frameworks (MOFs) are fast becoming a key working substance in water capture applications due to their interesting adsorption characteristics. Owing to the chemical tunability of MOFs, scientists developed thousands of MOFs in the last few decades. With the increasing interest in MOFs, this review paper provides a comprehensive survey of MOFs adsorbents and their roles in cooling and water desalination systems. Herein, three aspects are covered, the synthesis processes, the adsorption characteristics, and the implementation of MOFs at the system level. Many challenges are discussed, such as mass production, the energy demand for synthesis, and the chemical modulation of MOFs to enhance their adsorption characteristics. Many MOFs are presented, but the sorption characteristics of most of them have not been tested yet. Subsequently, a small number of the presented MOFs have been employed in sorption applications. Accordingly, a gap should be filled to test and employ the MOFs in sorption applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据