4.8 Article

Steam reforming of methane: Current states of catalyst design and process upgrading

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2021.111330

关键词

Steam reforming of methane; Sorption enhanced SRM; Chemical looping SRM; Photo-thermo-photo hybrid; Plasma SRM

向作者/读者索取更多资源

This article reviews the recent advances in steam reforming of methane (SRM) technology over the past decade, focusing on improvements in catalyst construction and the development of new processes. It discusses the enhancements made in conventional SRM catalysts and the exploration of novel SRM processes, providing insights for future research in this significant area.
Methane (CH4) is the major component of currently abundant natural gas and a prominent green-house gas. Steam reforming of methane (SRM) is an important technology for the conversion of CH4 into H2 and syngas. To improve the catalytic activity and coking resistance of SRM catalysts, great efforts (including the addition of promoters, development of advanced supports, and structural modification, etc.) have been made with considerable progress in the past decade. Meanwhile, a series of novel processes have been explored for more efficient and energy-saving SRM. In this scenario, a comprehensive review on the recent advances in SRM is necessary to provide a constructive insight into the development of SRM technology, however, is still lacking. Herein, the improvements in catalyst construction for conventional SRM and the newly developed SRM processes in the past decade are presented and analyzed. First, the critical issues of SRM catalysts are briefly introduced. Then, the recent research advances of the most popular Ni based catalysts and the catalysts based on the other non-noble metals (Co, Cu, Mo etc.) and the efficient but costly noble metals (Au, Pt, Pd, Rh, Ru etc.) are discussed. Furthermore, the development of the representative modified SRM processes, including thermo-photo hybrid SRM, sorbent enhanced SRM, oxidative SRM, chemical looping SRM, plasma and electrical-field enhanced SRM, is demonstrated, and their advantages and limits are compared. Finally, a critical perspective is provided to enlighten future work on this significant area.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据