4.7 Article

Improving snow depth estimation by coupling HUT-optimized effective snow grain size parameters with the random forest approach

期刊

REMOTE SENSING OF ENVIRONMENT
卷 264, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2021.112630

关键词

Snow depth; Effective snow grain size (effGS); Random forest (RF); HUT model

资金

  1. National Natural Science Foundation of China [42090014]
  2. Second Tibetan Plateau Scientific Expedition and Research Program [2019QZKK0206]
  3. Science and Technology Basic Resources Investigation Program of China [2017FY100502]

向作者/读者索取更多资源

This study combined a microwave snow emission model with a random forest machine learning technique to retrieve snow depth over China, with optimized snowpack descriptors. The inclusion of effGS greatly enhanced the overall performance in snow depth estimation, showing better performance on a temporal scale compared to a spatial scale.
Snow cover is highly critical for global water and energy cycles because of its wide areal extent, high reflectivity and good thermal insulation. Knowledge of snow conditions, e.g., snow water equivalent (SWE) and snow depth, is significant to hydrologic and climatologic processes. Spaceborne passive microwave (PMW) data, namely, brightness temperature (TB), have been in use for snow depth and SWE retrieval at the global scale since 1978. However, the sensitivity of TB to these parameters is complex due to snow metamorphism (e.g., snow grain size, GS), which limits the feasibility of many existing algorithms characterizing snow. This study presents a new methodology to retrieve snow depth over China by coupling a microwave snow emission model with a random forest (RF) machine learning (ML) technique. An effective GS value (effGS), a prior snowpack descriptor, was optimized utilizing the Helsinki University of Technology (HUT) model by minimizing the difference between AMSR2 observations (18.7 and 36.5 GHz) and HUT simulations. Five elaborately selected independent variables, including vertical polarized TB differences (TBD) between 18.7 and 36.5 GHz (TBD18.7V&36.5V), 10.65 and 36.5 GHz (TBD10.65V&36.5V), longitude, elevation and effGS, together with the target variable, snow depth, were applied to train the RF model, and then the 10-fold cross-validation (10-CV) approach was employed for performance validation using station data during the period from 2012 to 2018. The results indicated that (1) inclusion of effGS in RF greatly enhanced the overall performance in snow depth estimation; (2) the trained RF model performed better on a temporal scale than on a spatial scale, with unRMSEs of 1.81 cm and 3.17 cm, respectively; (3) specifically, the fitted RF algorithm partially addressed the overestimation in shallow (<= 20 cm) snowpacks and underestimation in deep (> 20 cm) snow conditions when compared with the established RF algorithm based solely on predictor variables but without effGS. To evaluate the predictive power of the RF algorithm trained with samples in 2017 and 2018, spatially independent station measurements during the period from 2012 to 2016 and field survey data collected from January 2018 to March 2019 were used for validation. Additionally, the RF estimates were compared with two widely used satellite products (AMSR2 and GlobSnow-2). The validation results showed that RF estimates were closer to the in situ data than the other two satellite products. This study demonstrated the potential utility of combining the snow emission model with an ML approach to improve snow depth estimation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据