4.7 Article

Monitoring restored tropical forest diversity and structure through UAV-borne hyperspectral and lidar fusion

期刊

REMOTE SENSING OF ENVIRONMENT
卷 264, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2021.112582

关键词

Forest landscape restoration; Tropical forests; Drones; Lidar remote sensing; Hyperspectral remote sensing; Leaf area density; Vegetation indices

资金

  1. Sao Paulo Research Foundation (FAPESP) [2018/21338-3, 2018/18416-2, 2019/14697-0, 2019/08533-4, 2019/24049-5]
  2. McIntire-Stennis program of the USDA
  3. Fondecyt [11191021]
  4. Brazilian National Council for Scientific and Technological Development (CNPq) [306345/2020-0, 302891/2018-8, 408785/2018-7]
  5. National Science Foundation (NSF) [DEB-1754357, DEB-1950080, EF-1340604, EF-1550686]
  6. Agence Nationale de la Recherche (BioCop project) [ANR-17CE32-0001]

向作者/读者索取更多资源

Remote sensors, particularly UAV-borne lidar and hyperspectral data, offer a promising technology for monitoring forest restoration projects. By combining these two types of data, it is possible to accurately assess vegetation diversity and structure, leading to improved decision-making processes in restoration efforts.
Remote sensors, onboard orbital platforms, aircraft, or unmanned aerial vehicles (UAVs) have emerged as a promising technology to enhance our understanding of changes in ecosystem composition, structure, and function of forests, offering multi-scale monitoring of forest restoration. UAV systems can generate highresolution images that provide accurate information on forest ecosystems to aid decision-making in restoration projects. However, UAV technological advances have outpaced practical application; thus, we explored combining UAV-borne lidar and hyperspectral data to evaluate the diversity and structure of restoration plantings. We developed novel analytical approaches to assess twelve 13-year-old restoration plots experimentally established with 20, 60 or 120 native tree species in the Brazilian Atlantic Forest. We assessed (1) the congruence and complementarity of lidar and hyperspectral-derived variables, (2) their ability to distinguish tree richness levels and (3) their ability to predict aboveground biomass (AGB). We analyzed three structural attributes derived from lidar data-canopy height, leaf area index (LAI), and understory LAI-and eighteen variables derived from hyperspectral data-15 vegetation indices (VIs), two components of the minimum noise fraction (related to spectral composition) and the spectral angle (related to spectral variability). We found that VIs were positively correlated with LAI for low LAI values, but stabilized for LAI greater than 2 m2/m2. LAI and structural VIs increased with increasing species richness, and hyperspectral variability was significantly related to species richness. While lidar-derived canopy height better predicted AGB than hyperspectral-derived VIs, it was the fusion of UAV-borne hyperspectral and lidar data that allowed effective co-monitoring of both forest structural attributes and tree diversity in restoration plantings. Furthermore, considering lidar and hyperspectral data together more broadly supported the expectations of biodiversity theory, showing that diversity enhanced biomass capture and canopy functional attributes in restoration. The use of UAV-borne remote sensors can play an essential role during the UN Decade of Ecosystem Restoration, which requires detailed forest monitoring on an unprecedented scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据