4.7 Article

From parcel to continental scale-A first European crop type map based on Sentinel-1 and LUCAS Copernicus in-situ observations

期刊

REMOTE SENSING OF ENVIRONMENT
卷 266, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2021.112708

关键词

Copernicus; Monitoring; Sentinel-1; Sentinel-2; LUCAS; Crop modeling; Crop type; Crop yield forecasting; Climate change; Crop production; Classification; Validation; Time series; Parcel

向作者/读者索取更多资源

Detailed crop type mapping for the entire European Union is essential for evaluating agricultural policies. This study presents the first continental crop type map at 10-m spatial resolution for the EU based on Sentinel-1 data, and assesses its accuracy using multiple approaches. The results demonstrate the feasibility of using Sentinel-1 data for mapping crop types at a continental scale.
Detailed parcel-level crop type mapping for the whole European Union (EU) is necessary for the evaluation of agricultural policies. The Copernicus program, and Sentinel-1 (S1) in particular, offers the opportunity to monitor agricultural land at a continental scale and in a timely manner. However, so far the potential of S1 has not been explored at such a scale. Capitalizing on the unique LUCAS 2018 Copernicus in-situ survey, we present the first continental crop type map at 10-m spatial resolution for the EU based on S1A and S1B Synthetic Aperture Radar observations for the year 2018. Random Forest classification algorithms are tuned to detect 19 different crop types. We assess the accuracy of this EU crop map with three approaches. First, the accuracy is assessed with independent LUCAS core in-situ observations over the continent. Second, an accuracy assessment is done specifically for main crop types from farmers declarations from 6 EU member countries or regions totaling >3 M parcels and 8.21 Mha. Finally, the crop areas derived by classification are compared to the subnational (NUTS 2) area statistics reported by Eurostat. The overall accuracy for the map is reported as 80.3% when grouping main crop classes and 76% when considering all 19 crop type classes separately. Highest accuracies are obtained for rape and turnip rape with user and produced accuracies higher than 96%. The correlation between the remotely sensed estimated and Eurostat reported crop area ranges from 0.93 (potatoes) to 0.99 (rape and turnip rape). Finally, we discuss how the framework presented here can underpin the operational delivery of inseason high-resolution based crop mapping.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据