4.7 Article

Spatial and temporal deep learning methods for deriving land-use following deforestation: A pan-tropical case study using Landsat time series

期刊

REMOTE SENSING OF ENVIRONMENT
卷 264, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2021.112600

关键词

Spatio-temporal; Deep learning methods; Large-scale land-use classification; Satellite imagery time series; Landsat imagery; Pan-tropical model; Continental models; Land-use following deforestation

资金

  1. Norwegian Agency for Development Cooperation (Norad) [QZA-016/0110, 1500551]
  2. International Climate Initiative (IKI) of the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) [15_III_075]
  3. CGIAR Research Program on Forests, Trees and Agroforestry (CRP-FTA)
  4. CGIAR
  5. European Commission H2020 REDD Copernicus project [821880]
  6. European Commission H2020 LANDSENSE project [689812]
  7. H2020 Societal Challenges Programme [821880] Funding Source: H2020 Societal Challenges Programme

向作者/读者索取更多资源

This study assessed land-use classification methods following deforestation, finding that spatio-temporal models outperformed spatial or temporal models. Spatial patterns of land-use within a continent had more commonalities than temporal patterns across continents.
Assessing land-use following deforestation is vital for reducing emissions from deforestation and forest degradation. In this paper, for the first time, we assess the potential of spatial, temporal and spatio-temporal deep learning methods for large-scale classification of land-use following tropical deforestation using dense satellite time series over six years on the pan-tropical scale (incl. Latin America, Africa, and Asia). Based on an extensive reference database of six forest to land-use conversion types, we find that the spatio-temporal models achieved a substantially higher F1-score accuracies than models that account only for spatial or temporal patterns. Although all models performed better when the scope of the problem was limited to a single continent, the spatial models were more competitive than the temporal ones in this setting. These results suggest that the spatial patterns of land-use within a continent share more commonalities than the temporal patterns and the spatial patterns across continents. This work explores the feasibility of extending and complementing previous efforts for characterizing follow-up land-use after deforestation at a small-scale via human visual interpretation of high resolution RGB imagery. It supports the usage of fast and automated large-scale land-use classification and showcases the value of deep learning methods combined with spatio-temporal satellite data to effectively address the complex tasks of identifying land-use following deforestation in a scalable and cost effective manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据