4.7 Review

Nanocoatings: Universal antiviral surface solution against COVID-19

期刊

PROGRESS IN ORGANIC COATINGS
卷 163, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.porgcoat.2021.106670

关键词

Covid-19; SARS-CoV-2; Antiviral coating; Nanomaterials

资金

  1. Department of Science and Technology (DST) , India [INSPIRE-IF190284]

向作者/读者索取更多资源

Nanotechnologists and material scientists are developing sustainable antiviral surface coatings for various substrates to combat the spread of COVID-19, utilizing nanomaterials that interact with the spike protein of SARS-CoV-2. These coatings inhibit viral entry into host cells by depleting the spike glycoprotein, offering important implications for epidemic prevention.
In the current scenario, there is critical global demand for the protection of daily handling surfaces from the viral contamination to limit the spread of COVID-19 infection. The nanotechnologists and material scientists offer sustainable solutions to develop antiviral surface coatings for various substrates including fabrics, plastics, metal, wood, food stuffs etc. to face current pandemic period. They create or propose antiviral surfaces by coating them with nanomaterials which interact with the spike protein of SARS-CoV-2 to inhibit the viral entry to the host cell. Such nanomaterials involve metal/metal oxide nanoparticles, hierarchical metal/metal oxide nanostructures, electrospun polymer nanofibers, graphene nanosheets, chitosan nanoparticles, curcumin nanoparticles, etched nanostructures etc. The antiviral mechanism involves the repletion (depletion) of the spike glycoprotein that anchors to surfaces by the nanocoating and makes the spike glycoprotein and viral nucleotides inactive. The nature of interaction between the nanomaterial and virus depends on the type nanostructure coating over the surface. It was found that functional coating materials can be developed using nanomaterials as their polymer nanocomposites. The various aspects of antiviral nanocoatings including the mechanism of interaction with the Corona Virus, the different type of nanocoatings developed for various substrates, future research areas, new opportunities and challenges are reviewed in this article.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据