4.6 Review

The summer distribution, habitat associations and abundance of seabirds in the sub-polar frontal zone of the Northwest Atlantic

期刊

PROGRESS IN OCEANOGRAPHY
卷 198, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pocean.2021.102657

关键词

Distance sampling; Habitat model; Mesoscale eddy; Marine protected area; Procellariiformes; Shearwater

资金

  1. UK Natural Environmental Research Council (NERC) [NE/M017990/1]
  2. Fundacao para a Ciencia e a Tecnologia (FCT) [MARE-UIDB/04292/2020, UIDP/04292/2020]
  3. Norwegian Ministry of Climate and Environment
  4. Norwegian Ministry of Foreign Affairs
  5. Norwegian Oil and Gas Association
  6. NERC [NE/M017990/1] Funding Source: UKRI

向作者/读者索取更多资源

Biological production in the oceanic zone is patchy and seasonal, with seabirds adapting to move rapidly between ocean basins. Recent studies have shown that seabirds are relatively abundant and diverse in the Sub-polar Frontal Zone of the North Atlantic, leading to a proposal for Marine Protected Area status. The density of seabird species in the area is influenced by environmental factors such as sea surface temperature and water mass zonation.
Biological production in the oceanic zone (i.e. waters beyond the continental shelves) is typically spatially patchy and strongly seasonal. In response, seabirds have adapted to move rapidly within and between ocean basins, making them important pelagic consumers. Studies in the Pacific, Southern and Indian Oceans have shown that seabirds are relatively abundant in major frontal systems, with species composition varying by water mass. In contrast, surprisingly little was known about seabird distribution in the oceanic North Atlantic until recent tracking showed that relative abundance and diversity peak in the Sub-polar Frontal Zone, west of the Mid Atlantic Ridge, now proposed as a Marine Protected Area. However, absolute seabird abundance, distribution, age and species composition, and their potential environmental drivers in the oceanic temperate NW Atlantic remain largely unknown. Consequently, we systematically surveyed seabirds and environmental conditions across this area by ship in June 2017, then modelled the density of common species as functions of environmental covariates, validating model predictions against independent tracking data. Medium-sized petrels (99.8%), especially Great Shearwaters (Ardenna gravis, 63%), accounted for the majority of total avian biomass, which correlated at the macroscale with net primary production and peaked at the sub-polar front. At the mesoscale, the density of each species was associated with sea surface temperature, indicating zonation by water mass. Most species also exhibited scale-dependent associations with eddies and fronts. Approximately 51, 26, 23, 7 and 1 % of the currently estimated Atlantic populations of Cory's Shearwaters (Calonectris borealis), Great Shearwaters, Sooty Shearwaters (A. grisea), Northern Fulmars (Fulmarus glacialis) and Leach's Storm-petrels (Oceanodroma leucorhoa) occurred in the area during our survey, many of which were undergoing moult (a vital maintena nce activity). For some species, these estimates are higher than suggested by tracking, probably due to the presence of immatures and birds from untracked populations. Our results support the conclusion that MPA status is warranted and provide a baseline against which future changes can be assessed. Moreover, they indicate potential drivers of seabird abundance and diversity in the oceanic zone of the North Atlantic that should be investigated further.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据