4.7 Article

Reversible Redox Chemistry and Catalytic C(sp3)-H Amination Reactivity of a Paramagnetic Pd Complex Bearing a Redox-Active o-Aminophenol-Derived NNO Pincer Ligand

期刊

INORGANIC CHEMISTRY
卷 55, 期 17, 页码 8603-8611

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.6b01192

关键词

-

资金

  1. European Research Council through an ERC Starting Grant (EuReCat) [279097]
  2. European Research Council (ERC) [279097] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

The synthesis, spectroelectrochemical characterization (ultraviolet-visible and nuclear magnetic resonance), solid state structures, and computational metric parameters of three isostructural PdCI(NNO) complexes 1 [PdCl(NNOISQ)], 2 {[PdCl(NNOAP)](-1)}, and 5 {[PdCl(NNOIBQ)](+)} (NNO = o-aminophenol-derived redox-active ligand with a pendant pyridine) with different NNO oxidation states are described. The reduced diamagnetic complex 2 readily reacts with halogenated solvents, including lattice solvent from crystalline pure material, as supported by spectroscopic data and density functional theory calculations. Thorough removal of chlorinated impurities allows for modest catalytic turnover in the conversion of 4-phenylbutyl azide into N-protected 2-phenylpyrrolidine, which is the first example of a palladium-catalyzed radical-type transformation facilitated by a redox-active ligand as well as the first C-H amination mediated by ligand-to-substrate single-electron transfer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据