4.8 Article

On the sparsity of fitness functions and implications for learning

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2109649118

关键词

fitness functions; compressed sensing; epistasis; protein structure

资金

  1. Chan Zuckerberg Investigator Program
  2. Army Research Office [W911NF2110117]

向作者/读者索取更多资源

Fitness functions map biological sequences to specific properties, but accurately estimating these functions with limited data is a challenge. This study develops a framework to investigate the sparsity of fitness functions sampled from the GNK model and validates its effectiveness.
Fitness functions map biological sequences to a scalar property of interest. Accurate estimation of these functions yields biological insight and sets the foundation for model-based sequence design. However, the fitness datasets available to learn these functions are typically small relative to the large combinatorial space of sequences; characterizing how much data are needed for accurate estimation remains an open problem. There is a growing body of evidence demonstrating that empirical fitness functions display substantial sparsity when represented in terms of epistatic interactions. Moreover, the theory of Compressed Sensing provides scaling laws for the number of samples required to exactly recover a sparse function. Motivated by these results, we develop a framework to study the sparsity of fitness functions sampled from a generalization of the NK model, a widely used random field model of fitness functions. In particular, we present results that allow us to test the effect of the Generalized NK (GNK) model's interpretable parameters-sequence length, alphabet size, and assumed interactions between sequence positions-on the sparsity of fitness functions sampled from the model and, consequently, the number of measurements required to exactly recover these functions. We validate our framework by demonstrating that GNK models with parameters set according to structural considerations can be used to accurately approximate the number of samples required to recover two empirical protein fitness functions and an RNA fitness function. In addition, we show that these GNK models identify important higher-order epistatic interactions in the empirical fitness functions using only structural information.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据