4.3 Article

Exploring the impact of magnetic dipole on the radiative nanofluid flow over a stretching sheet by means of KKL model

期刊

PRAMANA-JOURNAL OF PHYSICS
卷 95, 期 4, 页码 -

出版社

INDIAN ACAD SCIENCES
DOI: 10.1007/s12043-021-02212-y

关键词

Nanofluid; Koo-Kleinstreuer-Li model; magnetic dipole; thermal radiation; non-uniform heat; source; chemical reaction; 47; 10; A-

向作者/读者索取更多资源

This study focuses on the rheological properties of nanofluids using the Koo-Kleinstreuer-Li model. The numerical results show that increasing the radiation parameter improves the thermal profile, while increasing the Biot number enhances the thermal boundary layer region. Additionally, an increase in the space-dependent internal heat sink/source parameter deteriorates the rate of heat transfer.
This study mainly focusses on the rheological properties of the nanofluids by using Koo-Kleinstreuer-Li model. The nanofluids have been proposed as viable replacements to traditional fluids due to their increased heat transport capacity. In this regard, the influence of non-uniform heat sink/source and thermal radiation effects on the nanoliquid flow past a stretching sheet is studied in the presence of chemical reaction and magnetic dipole. The defined flow equations are transformed to ordinary differential equations by using appropriate similarity variables and then they are numerically tackled with Runge Kutta Fehlberg-45 (RKF-45) scheme by adopting shooting process. The graphical outcomes of the velocity, thermal, concentration profiles, drag force, Sherwood number and Nusselt number are found to get an obvious insight into the existing boundary layer flow problem. The outcomes reveal that, the gain in values of radiation parameter improves the thermal profile due to the production of inner heat. The rise in Biot number improves the thermal boundary layer region which automatically boosts up the thermal profile. Further, the escalation in space-dependent internal heat sink/source parameter deteriorates the rate of heat transfer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据