4.7 Article

Micromechanical analysis of roller compaction process with DEM

期刊

POWDER TECHNOLOGY
卷 398, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.powtec.2022.117146

关键词

Roller compaction; Discrete element method; Elasto-plastic contact model; Ribbon splitting; Micro-CT

资金

  1. AiF ZIM Project [ZF4469701US7]

向作者/读者索取更多资源

This study applied DEM to analyze particle flow behavior, porosity distribution, and pressure distribution in roller compaction process. Results showed that particles passing the smallest gap had higher velocity than roller surface, and lateral stress could be a reason for ribbon splitting.
This study applies the discrete element method (DEM) to the roller compaction process for the analysis of particle flow behavior, porosity distribution in the compaction zone and in the final ribbon, as well as the pressure distribution on rollers. The roller compaction setup was implemented utilizing a piston feeder and smooth roller surfaces. The parameters of the elastoplastic DEM contact model were calibrated by uniaxial compression tests, interparticle and wall shear tests. Finally, the simulation results were validated by micro-computed tomography measurements of porosity profiles of manufactured lactose ribbons. From performed studies, it was observed that the particles passing the smallest gap possess higher velocity than the roller surface, and peak pressure is reached before the smallest gap. Furthermore, due to lateral relaxation, the particles in the center of the ribbon are faster than on the walls. The lateral stress can act as a further possible reason for the transversal ribbon splitting. (C) 2022 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据