4.6 Article

Beneficial impact of Ac3IV, an AVP analogue acting specifically at V1a and V1b receptors, on diabetes islet morphology and transdifferentiation of alpha- and beta-cells

期刊

PLOS ONE
卷 16, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0261608

关键词

-

资金

  1. Ulster University
  2. Diabetes UK (RCM)

向作者/读者索取更多资源

The study demonstrated that sustained treatment of Ac3IV has a positive impact on pancreatic islet cell morphology and transdifferentiation in diabetic mice, increasing insulin levels and reversing detrimental effects. Ac3IV also promoted beta-cell proliferation, decreased apoptosis, and partially reversed beta- to alpha-cell differentiation. Additionally, it improved islet architecture, with increased transition of alpha- to beta-cells and increased CK-19 co-expression with insulin in pancreatic ductal and islet cells.
Ac3IV (Ac-CYIQNCPRG-NH2) is an enzymatically stable vasopressin analogue that selectively activates Avpr1a (V1a) and Avpr1b (V1b) receptors. In the current study we have employed streptozotocin (STZ) diabetic transgenic Ins1(Cre/+);Rosa26-eYFP and Glu(CreERT2);Rosa26-eYFP mice, to evaluate the impact of sustained Ac3IV treatment on pancreatic islet cell morphology and transdifferentiation. Twice-daily administration of Ac3IV (25 nmol/kg bw) to STZ-diabetic Ins1(Cre/+);Rosa26-eYFP mice for 12 days increased pancreatic insulin (p<0.01) and significantly reversed the detrimental effects of STZ on pancreatic islet morphology. Such benefits were coupled with increased (p<0.01) beta-cell proliferation and decreased (p<0.05) beta-cell apoptosis. In terms of islet cell lineage tracing, induction of diabetes increased (p<0.001) beta- to alpha-cell differentiation in Ins1(Cre/+);Rosa26-eYFP mice, with Ac3IV partially reversing (p<0.05) such transition events. Comparable benefits of Ac3IV on pancreatic islet architecture were observed in STZ-diabetic Glu(CreERT2);ROSA26-eYFP transgenic mice. In this model, Ac3IV provoked improvements in islet morphology which were linked to increased (p<0.05-p<0.01) transition of alpha- to beta-cells. Ac3IV also increased (p<0.05-p<0.01) CK-19 co-expression with insulin in pancreatic ductal and islet cells. Blood glucose levels were unchanged by Ac3IV in both models, reflecting the severity of diabetes induced. Taken together these data indicate that activation of islet receptors for V1a and V1b positively modulates alpha- and beta-cell turnover and endocrine cell lineage transition events to preserve beta-cell identity and islet architecture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据