4.6 Article

mRNA codon optimization with quantum computers

期刊

PLOS ONE
卷 16, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0259101

关键词

-

向作者/读者索取更多资源

The study investigates the potential impact of using quantum computing technology for codon optimization, demonstrating that a Quantum Annealer is competitive in identifying optimal solutions. The utility of gate-based systems is also evaluated, suggesting that future generation devices may be highly efficient.
Reverse translation of polypeptide sequences to expressible mRNA constructs is a NP-hard combinatorial optimization problem. Each amino acid in the protein sequence can be represented by as many as six codons, and the process of selecting the combination that maximizes probability of expression is termed codon optimization. This work investigates the potential impact of leveraging quantum computing technology for codon optimization. A Quantum Annealer (QA) is compared to a standard genetic algorithm (GA) programmed with the same objective function. The QA is found to be competitive in identifying optimal solutions. The utility of gate-based systems is also evaluated using a simulator resulting in the finding that while current generations of devices lack the hardware requirements, in terms of both qubit count and connectivity, to solve realistic problems, future generation devices may be highly efficient.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据