4.5 Article

Mutated JAK2 signal transduction in human Induced Pluripotent Stem Cell (iPSC)-derived Megakaryocytes

期刊

PLATELETS
卷 33, 期 5, 页码 700-708

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/09537104.2021.1981850

关键词

Interferon; iPSCs; megakaryocytes; myeloproliferative neoplasms; signal transduction

资金

  1. 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship
  2. Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University [RA63/084]

向作者/读者索取更多资源

JAK2V617F expression in iPSCs preferentially promoted megakaryocytes with a signaling profile distinctive from JAK2exon12 expression. Treatments with interferon alpha or arsenic trioxide preferentially suppressed the mutated over wild-type JAK2 signaling. This iPSC model is helpful in mechanistic studies and novel therapy screen for myeloproliferative neoplasm.
Janus kinase 2 (JAK2) gene mutations are the main drivers for polycythemia vera (PV) and essential thrombocythemia (ET). The mechanisms of single altered gene causing two different diseases are unclear. Additionally, novel treatments specifically targeting mutated JAK2 proteins are needed. In this study, the induced pluripotent stem cells (iPSCs) were virally transduced to express wild-type JAK2 (JAK2WT), JAK2p.V617F (JAK2V617F) or JAK2p.N542_E543del (JAK2exon12) under a doxycycline-inducible system. The modified iPSCs which were differentiated into megakaryocytes in the presence vs. absence of doxycycline were compared to ensure that the differences were solely from mutated JAK2 expressions. The JAK2V617-expressing iPSCs yielded significantly higher numbers of megakaryocytes consistent with the ET phenotype, while there was no enhancement by JAK2exon12 expression compatible with the pure erythrocytosis in humans. Capillary Western analyses revealed significantly greater JAK2 phosphorylation in iPSCs carrying JAK2V617F but not in JAK2WT and JAK2exon12 iPSCs. Activation of STAT3, STAT5 and AKT was increased by JAK2V617F, while they were decreased in JAK2exon12 iPSCs. Notably, interferon alpha and/or arsenic trioxide inhibited megakaryocytes proliferation and reduced JAK2, STAT3, STAT5 and AKT phosphorylation in mutant JAK2-expressing iPSCs compared with those without induction. In conclusion, JAK2V617F expression in iPSCs preferentially promoted megakaryocytes with a signaling profile distinctive from JAK2exon12 expression. Treatments with interferon alpha or arsenic trioxide preferentially suppressed the mutated over wild-type JAK2 signaling. This iPSC model is helpful in mechanistic studies and novel therapy screen for myeloproliferative neoplasm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据