4.7 Article

Testing the limits of plant drought stress and subsequent recovery in four provenances of a widely distributed subtropical tree species

期刊

PLANT CELL AND ENVIRONMENT
卷 45, 期 4, 页码 1187-1203

出版社

WILEY
DOI: 10.1111/pce.14254

关键词

hydraulic failure; intraspecies; mortality; NSC; threshold

资金

  1. National Natural Science Foundation of China [31760111]
  2. Natural Science Talent Funding of Guizhou University [202132]

向作者/读者索取更多资源

This study investigated the drought tolerance and recovery process of Schima superba seedlings through a water manipulation experiment. The results showed differences in gas exchange recovery and stem hydraulics among different provenances.
Drought-induced tree mortality may increase with ongoing climate change. Unraveling the links between stem hydraulics and mortality thresholds, and the effects of intraspecific variation, remain important unresolved issues. We conducted a water manipulation experiment in a rain-out shelter, using four provenances of Schima superba originating from a gradient of annual precipitation (1124-1796 mm) and temperature (16.4-22.4 degrees C). Seedlings were droughted to three levels of percentage loss of hydraulic conductivity (i.e., P-50, P-88 and P-99) and subsequently rewatered to field capacity for 30 days; traits related to water and carbon relations were measured. The lethal water potential associated with incipient mortality was between P-50 and P-88. Seedlings exhibited similar drought responses in xylem water potential, hydraulic conductivity and gas exchange. Upon rehydration, patterns of gas exchange differed among provenances but were not related to the climate at the origin. The four provenances exhibited a similar degree of stem hydraulic recovery, which was correlated with the magnitude of antecedent drought and stem soluble sugar at the end of the drought. Results suggest that there were intraspecific differences in the capacity of S. superba seedlings for carbon assimilation during recovery, indicating a decoupling between gas exchange recovery and stem hydraulics across provenances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据