4.2 Article

The simple and rapid quantification method for L-3,4-dihydroxyphenylalanine (L-DOPA) from plant sprout using liquid chromatography-mass spectrometry

期刊

PLANT BIOTECHNOLOGY
卷 39, 期 2, 页码 199-204

出版社

JAPANESE SOC PLANT CELL & MOLECULAR BIOLOGY
DOI: 10.5511/plantbiotechnology.21.1126a

关键词

liquid chromatography-tandem mass spectrometry (LC-MS/MS); L-3,4-dihydroxyphenylalanine (L-DOPA); plant sprout

资金

  1. ACRO Research grant of Teikyo University [TeTe20-01]

向作者/读者索取更多资源

L-3,4-dihydroxyphenylalanine (L-DOPA) is an important secondary metabolite in plants, with various biological roles such as stress response and metabolism. This paper describes an improved method for the quantification of L-DOPA content in plants, which is simple and rapid and can be done with a small amount of plant tissue.
L-3,4-dihydroxyphenylalanine (L-DOPA) is one of the important secondary metabolites of plants and has been used for various purposes, such as in clinical treatment for Parkinson's disease and dopamine-responsive dystonia. In plants, L-DOPA is a precursor of many alkaloids, catecholamines, and melanin; the L-DOPA synthesis pathway is similar to that in mammals. L-DOPA acts as an allelochemical, has an important role in several biological processes, such as stress response and metabolism, in plants. L-DOPA is widely used in the clinical treatment as well as a dietary supplement or psychotropic drug, understanding of biosynthesis of L-DOPA in plant could lead to a stable supply of L-DOPA. This paper describes an improved method for simple and rapid quantification of L-DOPA content using liquid chromatography-tandem mass spectrometry. The standard quantitative methods for L-DOPA require multiple purification steps or relatively large amounts of plant material. In our improved method, quantification of L-DOPA was possible with extract of one-two pieces of cotyledon without any partitioning or column for purification. The endogenous L-DOPA (approximately 4,000 mu g g(-1) FW (fresh weight)) could be detected from the one pieces of cotyledon of the faba bean sprout using this method. This method was also effective for samples with low endogenous amounts of L-DOPA such as broccoli, Japanese white radish, pea, and red cabbage sprouts. Therefore, this improved method will allow to measurement of L-DOPA content easily and accurately from a small amount of plant tissue and contribute to understanding biosynthesis, catabolism, and transport of L-DOPA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据