4.5 Article

Transcriptome Analysis and Functional Validation Identify a Putative bZIP Transcription Factor, Fpkapc, that Regulates Development, Stress Responses, and Virulence in Fusarium pseudograminearum

期刊

PHYTOPATHOLOGY
卷 112, 期 6, 页码 1299-1309

出版社

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/PHYTO-12-21-0520-R

关键词

Fusarium pseudograminearum; bZIP transcription factor; Fpkapc; stress response; virulence

资金

  1. National Natural Science Foundation of China [U2004140]
  2. Major Public Welfare Scientific Research Project of Henan Province [201300111600]

向作者/读者索取更多资源

In this study, a bZIP transcription factor Fpkapc was identified in Fusarium pseudograminearum and shown to play multiple roles in governing growth, development, stress responses, and virulence in the pathogen.
Fusarium pseudograminearum is a soilborne, hemibiotrophic phytopathogenic fungus that causes Fusarium crown rot and Fusarium head blight in wheat. The basic leucine zipper proteins (bZIPs) are evolutionarily conserved transcription factors that play crucial roles in a range of growth and developmental processes and the responses to biotic and abiotic stresses. However, the roles of bZIP transcription factors remains unknown in F. pseudograminearum. In this study, a bZIP transcription factor Fpkapc was identified to localize to the nucleus in F. pseudograminearum. A mutant strain (Delta fpkapc) was constructed to determine the role of Fpkapc in growth and pathogenicity of F. pseudograminearum. Transcriptomic analyses revealed that many genes involved in basic metabolism and oxidation-reduction processes were downregulated, whereas many genes involved in metal iron binding were upregulated in the Delta fpkapc strain, compared with the wild type (WT). Correspondingly, the mutant had severe growth defects and displayed abnormal hyphal tips. Conidiation in the Fpkapc mutant was reduced, with more conidia in smaller size and fewer septa than in the WT. Also, relative to WT, the Delta fpkapc strain showed greater tolerance to ion stress, but decreased tolerance to H2O2. The mutant caused smaller disease lesions on wheat and barley plants, but significantly increased TRI gene expression, compared with the WT. In summary, Fpkapc plays multiple roles in governing growth, development, stress responses, and virulence in F. pseudograminearum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据