4.8 Article

Actuation of Janus Emulsion Droplets via Optothermally Induced Marangoni Forces

期刊

PHYSICAL REVIEW LETTERS
卷 127, 期 14, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.127.144503

关键词

-

资金

  1. National Science Foundation's CBET programme on Particulate and Multiphase Processes [1804241]
  2. US Army Research Office through the Institute for Soldier Nanotechnologies at MIT [W911NF-13-D-0001]
  3. Feodor Lynen Fellowship of the Alexander von Humboldt Foundation
  4. European Research Council [853619]
  5. Vannevar Bush Faculty Fellowship [N000141812878]
  6. German Research Foundation (DFG) [ZE1121/1-1]
  7. DFG Emmy Noether grant [ZE1121/3-1]
  8. Directorate For Engineering
  9. Div Of Chem, Bioeng, Env, & Transp Sys [1804241] Funding Source: National Science Foundation
  10. European Research Council (ERC) [853619] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

The article presents a mechanism for controlling droplet orientation using optically induced thermal gradients to generate interfacial tension differential, resulting in Marangoni flows and a net torque for predictable and controllable reorientation. This optothermally induced Marangoni dynamics offer a promising mechanism for controlling droplet-based micro-optical components in small thermal gradients.
Microscale Janus emulsions represent a versatile material platform for dynamic refractive, reflective, and light-emitting optical components. Here, we present a mechanism for droplet actuation that exploits thermocapillarity. Using optically induced thermal gradients, an interfacial tension differential is generated across the surfactant-free internal capillary interface of Janus droplets. The interfacial tension differential causes droplet-internal Marangoni flows and a net torque, resulting in a predictable and controllable reorientation of the droplets. The effect can be quantitatively described with a simple model that balances gravitational and thermal torques. Occurring in small thermal gradients, these optothermally induced Marangoni dynamics represent a promising mechanism for controlling droplet-based micro-optical components.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据