4.8 Article

Factoring 2048-bit RSA Integers in 177 Days with 13 436 Qubits and a Multimode Memory

期刊

PHYSICAL REVIEW LETTERS
卷 127, 期 14, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.127.140503

关键词

-

资金

  1. Institut de Physique Theorique (IPhT), Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA)
  2. Region Ile-deFrance

向作者/读者索取更多资源

The study focuses on the performance of a quantum computer architecture that combines a small processor and a storage unit for integer factorization. By using a temporally and spatially multiplexed memory, the number of processing qubits can be reduced significantly, achieving efficient factorization of large RSA integers.
We analyze the performance of a quantum computer architecture combining a small processor and a storage unit. By focusing on integer factorization, we show a reduction by several orders of magnitude of the number of processing qubits compared with a standard architecture using a planar grid of qubits with nearest-neighbor connectivity. This is achieved by taking advantage of a temporally and spatially multiplexed memory to store the qubit states between processing steps. Concretely, for a characteristic physical gate error rate of 10(-3), a processor cycle time of 1 microsecond, factoring a 2 048-bit RSA integer is shown to be possible in 177 days with 3D gauge color codes assuming a threshold of 0.75% with a processor made with 13 436 physical qubits and a memory that can store 28 million spatial modes and 45 temporal modes with 2 hours' storage time. By inserting additional error-correction steps, storage times of 1 second are shown to be sufficient at the cost of increasing the run-time by about 23%. Shorter run-times (and storage times) are achievable by increasing the number of qubits in the processing unit. We suggest realizing such an architecture using a microwave interface between a processor made with superconducting qubits and a multiplexed memory using the principle of photon echo in solids doped with rare-earth ions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据