4.8 Article

Direct Atomic-Scale Observation of Ultrasmall Ag Nanowires that Exhibit fcc, bcc, and hcp Structures under Bending

期刊

PHYSICAL REVIEW LETTERS
卷 128, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.128.015701

关键词

-

资金

  1. Beijing Natural Science Foundation [Z180014]
  2. Beijing Outstanding Young Scientists Projects [BJJWZYJH01201910005018]
  3. Natural Science Foundation of China [51771004, 12174014, 91860202, 51831004, U1930402]
  4. 111 project [DB18015]

向作者/读者索取更多资源

Metals usually exhibit one crystal structure, but this study shows that bending can cause fcc-structured Ag to access all three crystal structures. The complete process of transitioning from fcc to bcc, hcp, and finally re-oriented fcc structure was observed in situ.
Metals usually have three crystal structures: face-centered cubic (fcc), body-centered cubic (bcc), and hexagonal-close packed (hcp) structures. Typically, metals exhibit only one of these structures at room temperature. Mechanical processing can cause phase transition in metals, however, metals that exhibit all the three crystal structures have rarely been approached, even when hydrostatic pressure or shock conditions are applied. Here, through in situ observation of the atomic-scale bending and tensile process of similar to 5 nm-sized Ag nanowires (NWs), we show that bending is an effective method to facilitate fcc-structured Ag to access all the above-mentioned structures. The process of transitioning the fcc structure into a bcc structure, then into an hcp structure, and finally into a re-oriented fcc structure under bending has been witnessed in its entirety. This re-oriented fcc structure is twin-related to the matrix, which leads to twin nucleation without the need for partial dislocation activities. The results of this study advance our understanding of the deformation mechanism of small-sized fcc metals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据