4.6 Article

Phase evolution in thermally annealed Ni/Bi multilayers studied by X-ray absorption spectroscopy

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 24, 期 7, 页码 4415-4424

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1cp04544j

关键词

-

资金

  1. CSIR, India
  2. CSIR NET-JRF/SRF fellowship

向作者/读者索取更多资源

This study explores the feasibility of using X-ray Absorption Spectroscopy (XAS) to track changes in the local bonding environment in NiBi3 and NiBi systems. The decomposition of NiBi3 into NiO and Bi during thermal annealing was successfully tracked through changes in structural and magnetization behavior, which correlated well with the findings from XAS. The study also revealed that NiO becomes the dominant phase at 500 degrees C annealing temperature, as confirmed by magnetic hysteresis measurements and XAS.
The thin films of Ni and Bi are known to form NiBi3 and NiBi compounds spontaneously at the interface, which become superconducting below 4.2 K and show ferromagnetism either intrinsically or due to Ni impurities. Formation of NiBi3 and NiBi is a slow diffusion reaction, which means the local environment around Ni and Bi atoms may vary with time and temperature. In this report, we assess the feasibility of using X-ray Absorption Spectroscopy (XAS) as a tool to track the changes in local bonding environment in NiBi3 and NiBi. Thermal annealing at temperatures up to 500 degrees C was used to induce changes in the local environment in NiBi3 system. Consequent decomposition of NiBi3 into NiO and Bi has been tracked through changes in structural and magnetization behavior, which matched well with the findings of XAS. In addition, the magnetic hysteresis measurements indicated that NiO should be the dominant phase when NiBi3 is annealed at 500 degrees C. This was corroborated from XAS and was found to be >90%. The shift in K-edge of Ni in annealed samples was attributed to increasing charge state on Ni atom, which was ascertained by Bader charge analysis using Density Functional Theory (DFT). This study correlating macroscopic properties of NiBi3 with local bonding environment of the system indicates that XAS can be a very reliable tool for studying dynamics of diffusion in the NiBi3 system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据