4.6 Article

Physical and chemical aspects at the interface and in the bulk of CuInSe2-based thin-film photovoltaics

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 24, 期 3, 页码 1262-1285

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1cp04495h

关键词

-

资金

  1. New Energy and Industrial Technology Development Organization (NEDO) under the Ministry of Economy, Trade, and Industry (METI)
  2. JSPS KAKENHI [19K05282, 20K05354]
  3. Mitsubishi Foundation Research Grant in the Natural Sciences [201910001]
  4. Grants-in-Aid for Scientific Research [20K05354, 19K05282] Funding Source: KAKEN

向作者/读者索取更多资源

This paper reviews current issues in physical and chemical studies of CISe-based materials and devices, focusing on areas such as correlations between Cu-deficient phases and alkali-metals effects, applications to lightweight and flexible solar minimodules, single-crystalline epitaxial Cu(In,Ga)Se-2 films and devices, differences between Cu(In,Ga)Se-2 and Ag(In,Ga)Se-2 materials, wide-gap CuGaSe2 films and devices, all-dry processed CISe-based solar cells with high photovoltaic efficiencies, and fundamental studies on open circuit voltage loss analysis and energy band structure at the interface.
Chalcopyrite CuInSe2 (CISe)-based thin-film photovoltaic solar cells have been attracting attention since the 1970s. The technologies of CISe-based thin-film growth and device fabrication processes have already been put into practical applications and today commercial products are available. Nevertheless, there are numerous poorly understood areas in the physical and chemical aspects of the underlying materials science and interfacial and bulk defect physics in CISe-based thin-films and devices for further developments. In this paper, current issues in physical and chemical studies of CISe-based materials and devices are reviewed. Correlations between Cu-deficient phases and the effects of alkali-metals, applications to lightweight and flexible solar minimodules, single-crystalline epitaxial Cu(In,Ga)Se-2 films and devices, differences between Cu(In,Ga)Se-2 and Ag(In,Ga)Se-2 materials, wide-gap CuGaSe2 films and devices, all-dry processed CISe-based solar cells with high photovoltaic efficiencies, and also fundamental studies on open circuit voltage loss analysis and the energy band structure at the interface are among the main areas of discussion in this review.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据