4.4 Article

Photophysicochemical and Biological Properties of New Phthalocyanines Bearing 4-(trifluoromethoxy)phenoxy and 2-(4-methylthiazol-5-yl)ethoxy Groups on Peripheral Positions

期刊

PHOTOCHEMISTRY AND PHOTOBIOLOGY
卷 98, 期 4, 页码 894-906

出版社

WILEY
DOI: 10.1111/php.13553

关键词

-

向作者/读者索取更多资源

By evaluating the synergic effect of thiazoles and fluorinated groups on phthalocyanines, this study discovered the potential of new phthalocyanine compounds as efficient pharmaceutical agents with antimicrobial and antioxidant activities. The compounds showed effective microbial cell inhibition activity and high radical scavenging activity, indicating their possible use in antimicrobial and antioxidant therapies.
As thiazoles and fluorinated groups are well known as active species of hybrid pharmaceutical agents, this study aimed to evaluate the synergic effect of these groups on the biological features of phthalocyanines for the first time in the hope of discovering efficient pharmaceutical agents. Therefore, a new phthalonitrile derivative namely 4-(2-(4-methylthiazol-5-yl)ethoxy)-5-(4-(trifluoromethoxy)phenoxy)phthalonitrile (1) and its metal-free (2)/metal phthalocyanines (3-5) were prepared and characterized using various spectroscopic techniques. Solubility of new phthalocyanines (2-5) was examined in a series of polar and nonpolar solvents. Additionally, sono/photochemical methods were applied to examine the photophysical and sono/photochemical properties of new zinc phthalocyanine to measure its potential as a probable material for sono/photodynamic therapies. The antioxidant activities of compounds (1-5) were evaluated using the DPPH scavenging activity method and the highest radical scavenging activity was obtained 92.13% (200 mg L-1) for manganese phthalocyanine. All the phthalocyanines demonstrated high DNA nuclease activity, as well. The antimicrobial activities of compounds (1-5) were investigated using disk diffusion and microdilution methods. The phthalocyanines exhibited effective microbial cell inhibition activity against Escherichia coli (E. coli). Antimicrobial photodynamic therapy activity was investigated against E. coli by LED irradiation. Compounds (2-5) acted as photosynthesizers. Also, they displayed significant biofilm inhibition activity against Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据