4.7 Review

Cognitive impairment and type 2 diabetes mellitus: Focus of SGLT2 inhibitors treatment

期刊

PHARMACOLOGICAL RESEARCH
卷 176, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phrs.2022.106062

关键词

Gliflozins; Sodium-glucose co-transporter (SGLT); SGLT2 inhibitors; Type 2 diabetes mellitus (T2DM); Cognitive impairment; Central Nervous System (CNS)

向作者/读者索取更多资源

Gliflozins are a novel class of oral anti-diabetic drugs that inhibit sodium-glucose co-transporters and have potential effects on cognitive dysfunction in Type 2 Diabetes mellitus patients. Further research is needed to fully understand their impact on cognitive decline.
Gliflozins are a novel class of oral anti-diabetic drugs, acting as inhibitors of sodium-glucose co-transporters (SGLTs) through the proximal convoluted tubules (PCT) and intestinal epithelium. The sodium-glucose cotransporters 2 (SGLT2) are mainly expressed in S1 and S2 segments of the proximal convoluted tubule in the kidneys. Clinical guidelines recommend their use especially in Type 2 Diabetes mellitus (T2DM) patients with vascular complications and/or heart failure highlighting the importance of sodium-glucose co-transporter 2 inhibitors (SGLT2i) pleiotropic effects. Interestingly, cognitive decline is a widely recognized complication of T2DM and, in addition, to clarify its pathophysiology, there is an urgent need to understand how and if diabetes therapies can control diabetes-related cognitive dysfunction. At the time, although SGLT2 proteins are present in the Central Nervous System (CNS), the SGLT2i effects on cognitive impairments remain partly unknown. In preclinical studies, SGLT2i ameliorates cognitive dysfunction in obese and T2DM mice, reducing oxidative stress, neuroinflammation and improving neuronal plasticity and mitochondrial brain pathway. In addition, SGLT2i could bring back mTOR to a physiological state of activation, stopping neurodegenerative diseases' onset or progression. Instead, clinical studies on T2DM-related cognitive dysfunction treated by SGLT2i are much more limited. For these reasons, further studies are needed to better elucidate if SGLT2i therapy can affect T2DMrelated cognitive decline. In this scenario, this review aims to summarize the state of knowledge on the role of SGLT2i in T2DM-related cognitive dysfunction and stimulate new clinical trials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据