4.6 Article

Histopathology of the broad class of carbon nanotubes and nanofibers used or produced in US facilities in a murine model

期刊

PARTICLE AND FIBRE TOXICOLOGY
卷 18, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12989-021-00440-z

关键词

-

资金

  1. Nanotechnology Research Center of the National Institute for Occupational Safety and Health [939051D]

向作者/读者索取更多资源

The study revealed that multi-walled carbon nanotubes and nanofibers of different diameters induce varying histopathological changes in vivo. Physicochemical characteristics such as size and agglomeration can predict the toxicity profiles of materials, enabling grouping based on their effects on tissue pathology outcomes.
Background Multi-walled carbon nanotubes and nanofibers (CNT/F) have been previously investigated for their potential toxicities; however, comparative studies of the broad material class are lacking, especially those with a larger diameter. Additionally, computational modeling correlating physicochemical characteristics and toxicity outcomes have been infrequently employed, and it is unclear if all CNT/F confer similar toxicity, including histopathology changes such as pulmonary fibrosis. Male C57BL/6 mice were exposed to 40 mu g of one of nine CNT/F (MW #1-7 and CNF #1-2) commonly found in exposure assessment studies of U.S. facilities with diameters ranging from 6 to 150 nm. Human fibroblasts (0-20 mu g/ml) were used to assess the predictive value of in vitro to in vivo modeling systems. Results All materials induced histopathology changes, although the types and magnitude of the changes varied. In general, the larger diameter MWs (MW #5-7, including Mitsui-7) and CNF #1 induced greater histopathology changes compared to MW #1 and #3 while MW #4 and CNF #2 were intermediate in effect. Differences in individual alveolar or bronchiolar outcomes and severity correlated with physical dimensions and how the materials agglomerated. Human fibroblast monocultures were found to be insufficient to fully replicate in vivo fibrosis outcomes suggesting in vitro predictive potential depends upon more advanced cell culture in vitro models. Pleural penetrations were observed more consistently in CNT/F with larger lengths and diameters. Conclusion Physicochemical characteristics, notably nominal CNT/F dimension and agglomerate size, predicted histopathologic changes and enabled grouping of materials by their toxicity profiles. Particles of greater nominal tube length were generally associated with increased severity of histopathology outcomes. Larger particle lengths and agglomerates were associated with more severe bronchi/bronchiolar outcomes. Spherical agglomerated particles of smaller nominal tube dimension were linked to granulomatous inflammation while a mixture of smaller and larger dimensional CNT/F resulted in more severe alveolar injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据