4.3 Article

Effects of MicroRNA-195-5p on Biological Behaviors and Radiosensitivity of Lung Adenocarcinoma Cells via Targeting HOXA10

期刊

出版社

HINDAWI LTD
DOI: 10.1155/2021/4522210

关键词

-

资金

  1. National Natural Science Foundation of China [81773236, 81800429, 81972852]
  2. Key Research & Development Project of Hubei Province [2020BCA069]
  3. Nature Science Foundation of Hubei Province [2020CFB612]
  4. Health Commission of Hubei Province Medical Leading Talent Project
  5. Young and Middle-Aged Medical Backbone Talents of Wuhan [WHQG201902]
  6. Application Foundation Frontier Project of Wuhan [2020020601012221]
  7. Zhongnan Hospital of Wuhan University Science, Technology and Innovation Seed Fund [znpy2019001, znpy2019048]
  8. Zhongnan Hospital of Wuhan University [ZNJC201922, ZNJC202007]

向作者/读者索取更多资源

miR-195-5p inhibits cell proliferation, invasion, and migration, induces G1 phase arrest and apoptosis, and enhances radiosensitivity in lung adenocarcinoma cells by targeting HOXA10, suggesting its potential as a candidate for LUAD treatment.
Objective. To explore the effects of miR-195-5p and its target gene HOXA10 on the biological behaviors and radiosensitivity of lung adenocarcinoma (LUAD) cells. Methods. The effects of miR-195-5p on LUAD cell proliferation, migration, invasion, cycle arrest, apoptosis, and radiosensitivity were investigated by in vitro experiments. The bioinformatics analysis was used to assess its clinical value and predict target genes. Double-luciferase experiments were used to verify whether the miR-195-5p directly targeted HOXA10. A xenograft tumor-bearing mouse model was used to examine its effects on the radiosensitivity of LUAD in vivo. Results. Both gain- and loss-of-function assays demonstrated that miR-195-5p inhibited LUAD cell proliferation, invasion, and migration, induced G1 phase arrest and apoptosis, and enhanced radiosensitivity. Double-luciferase experiments confirmed that miR-195-5p directly targeted HOXA10. Downregulation of HOXA10 also inhibited LUAD cell proliferation, migration, and invasion, induced G1 phase arrest and apoptosis, and enhanced radiosensitivity. The protein levels of beta-catenin, c-myc, and Wnt1 were decreased by miR-195-5p and increased by its inhibitor. Moreover, the effects of the miR-195-5p inhibitor could be eliminated by HOXA10-siRNA. Furthermore, miR-195-5p improved radiosensitivity of LUAD cells in vivo. Conclusion. miR-195-5p has excellent antitumor effects via inhibiting cancer cell growth, invasion, and migration, arresting the cell cycle, promoting apoptosis, and sensitizing LUAD cells to X-ray irradiation by targeting HOXA10. Thus, miR-195-5p may serve as a potential candidate for the treatment of LUAD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据