4.5 Article

Performance enhancement of FSO communication system using machine learning for 5G/6G and IoT applications

期刊

OPTIK
卷 252, 期 -, 页码 -

出版社

ELSEVIER GMBH
DOI: 10.1016/j.ijleo.2021.168430

关键词

Free space optical communication; Support vector machine; Maximum likelihood; Attenuation; Turbulence

类别

向作者/读者索取更多资源

6G networks will provide high capacity and integrate different networks to enhance coverage. Artificial intelligence and IoT play important roles in 5G and 6G wireless communication systems. Free space optics is a promising technology for higher data rates. The proposed SVM-based decoding scheme can mitigate channel impairments.
6G networks will provide extremely high capacity and will support a wide range of new applications in the future, but the existing frequency bands may not be sufficient. Furthermore, because traditional wireless communications are incapable of providing high-speed data rates, 6G enables superior coverage by integrating space/air/underwater networks with terrestrial networks. 5G-and-beyond (5 GB) and 6G networks have been mandated as a paradigm shift to take the enhanced broadband, massive access, and ultra-reliable and low latency services of 5G wireless networks to an even more advanced and intelligent level, to meet the ever-growing quantities of demanding services. In 5G and 6G wireless communication systems, artificial intelligence (AI), particularly machine learning (ML), has emerged as an essential component of fully intelligent network orchestration and management. 5 GB and 6G communication systems will also rely heavily on a tactile Internet of Things (IoT). The diverse nature of heterogeneous traffic and the established service quality parameters in 5 GB networks will present numerous challenges. Many other wireless technologies, including free space optics (FSO), look promising for meeting the demands of 5 GB systems. FSO has been identified as a promising technology for achieving higher data rates while consuming less power. However, attenuation due to weather, pointing errors, and turbulences limits its performance. Traditional Maximum likelihood decoding techniques require prior channel information to decode the signals. in this paper, first time we proposed a novel decoding technique for decoding on-off keying (OOK) modulated FSO signals using support vector machines (SVM). The model is tested under various atmospheric weather conditions such as fog, rain, and snow, as well as turbulence and pointing errors. Simulated numerical results demonstrate that the proposed SVM-based decoding schemes are capable of mitigating attenuation, pointing error, and turbulent channel impairments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据