4.6 Article

General approach to precise deformable mirror control

期刊

OPTICS EXPRESS
卷 29, 期 21, 页码 33741-33759

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.439306

关键词

-

类别

资金

  1. National Science Foundation [EEC-1647837]

向作者/读者索取更多资源

The developed method adaptively determines a DM model and control actions through an iterative process, achieving precise control of deformable mirrors. Experimental results demonstrate that this method can achieve accurate correction within a few control iterations.
We develop a simple and effective control method for accurate control of deformable mirrors (DMs). For a desired DM surface profile and using batches of observed surface profile data, the proposed method adaptively determines both a DM model (influence matrix) and control actions that produce the desired surface profile with good accuracy. In the first iteration, the developed method estimates a DM influence matrix by solving a multivariable least-squares problem. This matrix is then used to compute the control actions by solving a constrained least-squares problem. Then, the computed actions are randomly perturbed and applied to the DM to generate a new batch of surface profile data. The new data batch is used to estimate a new influence matrix that is then used to re-compute control actions. This procedure is repeated until convergence is achieved. The method is experimentally tested on a Boston Micromachines DM with 140 micro-electronic-mechanical-system actuators. Our experimental results show that the developed control approach can achieve accurate correction despite significant DM nonlinearities. Using only a few control iterations, the developed method is able to produce a surface profile root-mean-square error that varies from 5 - 30 [nm] for most of the tested Zernike wave-front modes without using direct feedback control. These results can additionally be improved by using larger data batches and more iterations or by combining the developed approach with feedback control. Finally, as we experimentally demonstrate, the developed method can be used to estimate a DM model that can effectively be used for a single-step open-loop DM control. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据