4.6 Article

Photonic generation of flexible ultra-wide linearly-chirped microwave waveforms

期刊

OPTICS EXPRESS
卷 29, 期 26, 页码 43731-43744

出版社

Optica Publishing Group
DOI: 10.1364/OE.446788

关键词

-

类别

资金

  1. 2020 International Postdoctoral Exchange Fellowship Program
  2. National Key Research and Development Program of China [2018YFE0201800]
  3. National Natural Science Foundation of China [62005018, 62071042]

向作者/读者索取更多资源

In this paper, a method for generating flexible ultra-wide LCMWs based on FDML-OEO and DP-QPSK modulator is proposed and experimentally demonstrated. Results show that LCMWs with a maximum bandwidth of 10.8 GHz can be generated with a wide tuning range in center frequency and bandwidth. By controlling the bias conditions, dual-band LCMWs can also be generated.
Thanks to the large time bandwidth product (TBWP), linearly chirped microwave waveforms (LCMWs) are widely used in modern radar systems to achieve high-resolution detection and imaging. To overcome the challenge of small unmanned aerial vehicle detection and tracking, radar systems are required to have a higher resolution and multi-function operation, in which an ultra-wideband LCMW is highly preferred with a flexible tuning in the center frequency, instantaneous bandwidth, and multi-band operation. In this paper, we propose and experimentally demonstrate an approach to generating flexible ultra-wide LCMWs based on a Fourier-domain mode-locked optoelectronic oscillator (FDML-OEO) incorporating a dual-polarization quadrature phase-shift keying (DP-QPSK) modulator. In the DP-QPSK modulator, two dual-parallel Mach-Zehnder modulators (DP-MZMs) are integrated. With the use of the upper DP-MZM, an FDML-OEO is produced to generate a wideband LCMW with a tuning in the center frequency and instantaneous bandwidth. With the injection of the generated LCMW into the lower DP-MZM, an ultra-wideband LCMW is generated via microwave frequency multiplication, and multi-band waveform generation is enabled by controlling the bias condition of the lower DP-MZM. An experiment is performed and an LCMW with a maximum bandwidth as broad as 10.8 GHz is generated. By adjusting the driving signal applied to the FDML-OEO, the generated LCMW can be tuned in the center frequency from 16.2 to 23.2 GHz and the bandwidth from 3.6 to 10.8 GHz. By controlling the bias point of the lower DP-MZM, a dual-band LCMW is also experimentally demonstrated. Thanks to the ultra-wide bandwidth and strong flexibility of the generated LCMWs in terms of tunable center frequency, instantaneous bandwidth and multiband operation, the proposed approach offers a promising LCMW generator in the next-generation high-resolution radar systems. (C) 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据