4.7 Article

Feasibility assessment of next-generation drones powering by laser-based wireless power transfer

期刊

OPTICS AND LASER TECHNOLOGY
卷 143, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.optlastec.2021.107283

关键词

Wireless power transfer mechanism; one application; Laser-based power transfer; Laser charging

向作者/读者索取更多资源

This study investigates the theoretical feasibility of a laser-based wireless power transfer mechanism for drone applications, showing that drones can be wirelessly charged during operation at a considerable distance with acceptable efficiency. The use of a two-phase cooling system for the PV panel is suggested to reduce the temperature. Results demonstrate the net power received by equipped drones using different PV materials at a 500 m distance, with GaAs providing the highest net power.
Utilizing drones in many applications such as video and photography, farms, search and rescue operations, construction industry for mapping and site monitoring has increased. However, their operating time is limited according to the capacity of their batteries. Therefore, many researchers attempt to enhance the operating time of drones. In this study, to the best of the authors' knowledge for the first time, the feasibility assessment of a laser-based wireless power transfer (WPT) mechanism is theoretically investigated on drone applications to increase their operating time. In this method, drones can be charged during operation wirelessly at a considerable distance with acceptable efficiency. The Analytical code is developed in Engineering Equation Solver (EES) software. The acquired results for the main components of the system have a good agreement with published papers of other researchers. In this study, three commercial photovoltaic (PV) materials were evaluated. The results show that an equipped drone with laser-based WPT system is able to approximately receive net power of 73.5, 62.6, and 33.2 W at a 500 m distance by GaAs, CdTe, and c-Si PV materials, respectively, while the laser module consumes around 600 W electrical power. Moreover, since the optical power of the laser is concentrated on PV panel, a two-phase cooling system is suggested for PV panel to reduce the temperature of the under radiate area. Results demonstrate that the temperature of GaAs PV material without a two-phase cooling system is approximately three times more than the temperature of PV panels with a two-phase cooling system at high power transfer rates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据