4.6 Article

Aerodynamic fragmentation of water, ethanol and polyethylene glycol droplets investigated by high-speed in-line digital holography

期刊

OPTICAL MATERIALS
卷 122, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.optmat.2021.111747

关键词

Liquids fragmentation; Aerodynamic fragmentation; In-line digital holography; Shock tube; High-speed imaging

向作者/读者索取更多资源

Digital holography combined with high-speed imaging technology is used to study droplet fragmentation phenomenon under the action of shock waves and flows, determining the Weber numbers and observing consistent fragmentation patterns with the 'chaotic regime' reported in literature.
Digital holography is a remarkable interferometric technique for determining the size, shape, distribution, and spatial location of particles. Therefore, when combined with high-speed imaging technology, it represents a relevant technique for the study of the aerodynamic fragmentation phenomenon wherein the aerodynamic strengths counterbalance the cohesion forces of the drops causing thus their decomposition. We discuss in this paper the droplets fragmentation of water, ethanol and polyethylene glycol 300 solutions interacting with a shock wave and flow generated by an open-ended shock tube. In this context, a shock tube device was set up, and both the released flow as well as the shock wave generated were characterized by ultrafast imaging shadowgraphy and high speed pressure measurement. Millimeter diameter average drops are fragmented and imaged by high-speed digital in-line holography at a rate of 24800 fps, and then the image retrieved numerically. The Weber numbers are determined for each liquid and the observed fragmentation patterns are consistent with the description of the 'chaotic regime' reported in the literature by Pilch and Erdman (1987) [1].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据