4.7 Article

Mapping of laminar separation bubble and bubble-induced vibrations over a turbine blade at low Reynolds numbers

期刊

OCEAN ENGINEERING
卷 239, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.oceaneng.2021.109867

关键词

Marine wind turbine blades; Boundary layer separation; Laminar separation bubble; Flow-induced vibrations; Cyclic loads; Fatigue

资金

  1. Scientific Research Projects Unit of Erciyes University, Turkey [FDK-2019-8726]
  2. Scientific and Technological Research Council of Turkey (TuBITAK), Turkey

向作者/读者索取更多资源

The detailed experimental investigation in this study demonstrated that different airfoils on turbine blades can cause the formation of LSB, leading to stochastic vibrations that limit the lifespan of turbine blades.
A detailed experimental investigation on the mapping of the LSB formation over a turbine blade with different airfoils, and their vibration effects were considered first in this study. Wind tunnel experiments were performed on FX 84-W-150, SD7062, Clark-Y and WASP airfoils at Re = 3.5 x 10(4), Re = 7 x 10(4) and various angles of attack. Experimental arrangements consisted of detailed instantaneous and time-dependent flow visualizations, quasi-wall shear stress measurements by means of a hot-film sensor, aerodynamic force measurements with an external force balance system. It was observed that there was a strong correlation between voltage signals obtained from the hot-film sensor and the smoke-wire results. Fluctuation amplitude started to increase within the LSB especially at the aft portion due to the transition induced trapped roll-up vortices. Then, fluctuations peaked upstream of the reattachment point. It was observed that the airfoil with different thickness and camber caused the LSB (either short or long) to form, resulting in variation of aerodynamic forces with the time. This could trigger the stochastic vibrations such as flap-wise and edge-wise vibrations at the blade, causing the stochastic fatigue loads and limiting the lifespan of turbine blades.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据