4.5 Article

Long-term exposure to air pollution and COVID-19 incidence: a prospective study of residents in the city of Varese, Northern Italy

期刊

OCCUPATIONAL AND ENVIRONMENTAL MEDICINE
卷 79, 期 3, 页码 192-199

出版社

BMJ PUBLISHING GROUP
DOI: 10.1136/oemed-2021-107833

关键词

air pollution; COVID-19; epidemiology

资金

  1. Azienda Regionale per l'Innovazione e gli Acquisti (ARIA) S.p.a.
  2. Epidemiologico Regionale

向作者/读者索取更多资源

In a prospective study of residents in Varese city, long-term exposure to airborne pollutants, especially PM2.5, increased the incidence of COVID-19. The findings highlight the importance of reducing air pollution.
Objectives To investigate the association between long-term exposure to airborne pollutants and the incidence of SARS-CoV-2 up to March 2021 in a prospective study of residents in Varese city. Methods Citizens of Varese aged >= 18 years as of 31 December 2019 were linked by residential address to 2018 average annual exposure to outdoor concentrations of PM2.5, PM10, NO2, NO and ozone modelled using the Flexible Air quality Regional Model (FARM) chemical transport model. Citizens were further linked to regional datasets for COVID-19 case ascertainment (positive nasopharyngeal swab specimens) and to define age, sex, living in a residential care home, population density and comorbidities. We estimated rate ratios and additional numbers of cases per 1 mu g/m(3) increase in air pollutants from single- and bi-pollutant Poisson regression models. Results The 62 848 residents generated 4408 cases. Yearly average PM2.5 exposure was 12.5 mu g/m(3). Age, living in a residential care home, history of stroke and medications for diabetes, hypertension and obstructive airway diseases were independently associated with COVID-19. In single-pollutant multivariate models, PM2.5 was associated with a 5.1% increase in the rate of COVID-19 (95% CI 2.7% to 7.5%), corresponding to 294 additional cases per 100 000 person-years. The association was confirmed in bi-pollutant models; excluding subjects in residential care homes; and further adjusting for area-based indicators of socioeconomic level and use of public transportation. Similar findings were observed for PM10, NO2 and NO. Ozone was associated with a 2% decrease in disease rate, the association being reversed in bi-pollutant models. Conclusions Long-term exposure to low levels of air pollutants, especially PM2.5, increased the incidence of COVID-19. The causality warrants confirmation in future studies; meanwhile, government efforts to further reduce air pollution should continue.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据