4.6 Article

Heat rectification through single and coupled quantum dots

期刊

NEW JOURNAL OF PHYSICS
卷 24, 期 3, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1367-2630/ac53b8

关键词

quantum dots; heat rectification; electronic transport; cotunneling

资金

  1. SNS-WIS joint lab QUANTRA
  2. University of Catania [2020/2022]
  3. U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DESC0017890]
  4. Knut and Alice Wallenberg Foundation

向作者/读者索取更多资源

This study investigates the phenomenon of heat rectification through quantum dots in the Coulomb blockade regime. The analysis considers different configurations and parameters, and finds that cotunneling contributions can enhance rectification in certain cases, leading to perfect non-local rectification under specific parameters.
We study heat rectification through quantum dots in the Coulomb blockade regime using a master equation approach. We consider both cases of two-terminal and four-terminal devices. In the two-terminal configuration, we analyze the case of a single quantum dot with either a doubly-degenerate level or two non-degenerate levels. In the sequential tunneling regime we analyze the behaviour of heat currents and rectification as functions of the position of the energy levels and of the temperature bias. In particular, we derive an upper bound for rectification in the closed-circuit setup with the doubly-degenerate level. We also prove the absence of a bound for the case of two non-degenerate levels and identify the ideal system parameters to achieve nearly perfect rectification. The second part of the paper deals with the effect of second-order cotunneling contributions, including both elastic and inelastic processes. In all cases we find that there exists ranges of values of parameters (such as the levels' position) where rectification is enhanced by cotunneling. In particular, in the doubly-degenerate level case we find that cotunneling corrections can enhance rectification when they reduce the magnitude of the heat currents. For the four-terminal configuration, we analyze the non-local situation of two Coulomb-coupled quantum dots, each connected to two terminals: the temperature bias is applied to the two terminals connected to one quantum dot, while the heat currents of interest are the ones flowing in the other quantum dot. Remarkably, in this situation we find that non-local rectification can be perfect as a consequence of the fact that the heat currents vanish for properly tuned parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据