4.7 Article

A novel role for the ADHD risk gene latrophilin-3 in learning and memory in Lphn3 knockout rats

期刊

NEUROBIOLOGY OF DISEASE
卷 158, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2021.105456

关键词

Lphn3; Adgrl-3; Lphn3 knockout rat; Cognition; Long-term potentiation; Spatial learning and memory; Egocentric learning; Novel object recognition

资金

  1. NIH [T32 ES007051, R21 MH110609]
  2. L.I.F.E Foundation
  3. University of Cincinnati Graduate School Dean's Dissertation Completion Fellowship

向作者/读者索取更多资源

Research suggests that LPHN3 has a selective impact on egocentric and allocentric learning and memory, while having no effects on conditioned freezing or recognition memory.
Latrophilins (LPHNs) are adhesion G protein-coupled receptors with three isoforms but only LPHN3 is brain specific (caudate, prefrontal cortex, dentate, amygdala, and cerebellum). Variants of LPHN3 are associated with ADHD. Null mutations of Lphn3 in rat, mouse, zebrafish, and Drosophila result in hyperactivity, but its role in learning and memory (L&M) is largely unknown. Using our Lphn3 knockout (KO) rats we examined the cognitive abilities, long-term potentiation (LTP) in CA1, NMDA receptor expression, and neurohistology from heterozygous breeding pairs. KO rats were impaired in egocentric L&M in the Cincinnati water maze, spatial L&M and cognitive flexibility in the Morris water maze (MWM), with no effects on conditioned freezing, novel object recognition, or temporal order recognition. KO-associated locomotor hyperactivity had no effect on swim speed. KO rats had reduced early-LTP but not late-LTP and had reduced hippocampal NMDA-NR1 expression. In a second experiment, KO rats responded to a light prepulse prior to an acoustic startle pulse, reflecting visual signal detection. In a third experiment, KO rats given extra MWM pretraining and hidden platform overtraining showed no evidence of reaching WT rats' levels of learning. Nissl histology revealed no structural abnormalities in KO rats. LPHN3 has a selective effect on egocentric and allocentric L&M without effects on conditioned freezing or recognition memory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据