4.8 Article

Bulk and edge properties of twisted double bilayer graphene

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Physics, Multidisciplinary

Symmetry breaking in twisted double bilayer graphene

Minhao He et al.

Summary: The study reveals that spontaneous symmetry breaking plays a crucial role in the correlated insulating and metallic states in twisted double bilayer graphene, which can be tuned by both the twist angle and an external electric field. The metallic states exhibit abrupt drops in resistivity as temperature decreases, suggesting that spontaneous symmetry breaking is the origin of the abrupt resistivity drops, while nonlinear transport seems to be due to Joule heating. These findings imply that similar mechanisms may be relevant across a broader class of semiconducting flat band van der Waals heterostructures.

NATURE PHYSICS (2021)

Article Multidisciplinary Sciences

Correlation-driven topological phases in magic-angle twisted bilayer graphene

Youngjoon Choi et al.

Summary: Magic-angle twisted bilayer graphene (MATBG) exhibits a variety of correlated phenomena, and new techniques introduced can determine the topological phases that emerge in MATBG in a finite magnetic field. These topological phases form only in a specific range of twist angles and are influenced by strong electronic interactions.

NATURE (2021)

Article Chemistry, Physical

Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene

Shuang Wu et al.

Summary: In magic-angle twisted bilayer graphene, doping-induced Lifshitz transitions and van Hove singularities lead to the emergence of correlation-induced gaps and topologically non-trivial subbands. With the presence of a magnetic field, quantized Hall plateaus reveal the subband topology and signal the emergence of Chern insulators with Chern numbers. Additionally, a van Hove singularity at a filling of 3.5 suggests the possibility of a fractional Chern insulator, accompanied by a crossover from low-temperature metallic to high-temperature insulating behavior.

NATURE MATERIALS (2021)

Article Physics, Multidisciplinary

Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene

Ipsita Das et al.

Summary: The study presents a rich sequence of quantized Hall conductance regions in magic-angle twisted bilayer graphene (MATBG), driven by specific electronic interactions, revealing the complex nature of symmetry breaking in MATBG. Analysis of Landau level crossings provides constraints on the parameters of the MATBG Hamiltonian and allows for quantitative tests of proposed microscopic scenarios for its electronic phases.

NATURE PHYSICS (2021)

Article Multidisciplinary Sciences

Flavour Hund's coupling, Chern gaps and charge diffusivity in moire graphene

Jeong Min Park et al.

Summary: Interaction-driven spontaneous symmetry breaking plays a key role in the emergence of correlated and topological ground states in moire systems such as magic-angle twisted bilayer graphene (MATBG). Through thermodynamic and transport measurements, we have observed broken spin/valley 'flavour' symmetry in MATBG and its nontrivial topology. Furthermore, the topological nature of the flat bands is revealed by breaking time-reversal symmetry, leading to the observation of Chern insulator states with different Chern numbers at specific filling factors. Our findings shed light on the understanding of interactions in the topological bands of MATBG, both with and without a magnetic field.

NATURE (2021)

Article Multidisciplinary Sciences

Intrinsic quantized anomalous Hall effect in a moire heterostructure

M. Serlin et al.

SCIENCE (2020)

Article Physics, Multidisciplinary

Correlated states in twisted double bilayer graphene

Cheng Shen et al.

NATURE PHYSICS (2020)

Article Multidisciplinary Sciences

Tunable spin-polarized correlated states in twisted double bilayer graphene

Xiaomeng Liu et al.

NATURE (2020)

Article Multidisciplinary Sciences

Strongly correlated Chern insulators in magic-angle twisted bilayer graphene

Kevin P. Nuckolls et al.

NATURE (2020)

Article Multidisciplinary Sciences

Bulk valley transport and Berry curvature spreading at the edge of flat bands

Subhajit Sinha et al.

NATURE COMMUNICATIONS (2020)

Article Physics, Multidisciplinary

Topological Insulators in Twisted Transition Metal Dichalcogenide Homobilayers

Fengcheng Wu et al.

PHYSICAL REVIEW LETTERS (2019)

Article Multidisciplinary Sciences

Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene

Aaron L. Sharpe et al.

SCIENCE (2019)

Article Physics, Multidisciplinary

Correlated Insulating States in Twisted Double Bilayer Graphene

G. William Burg et al.

PHYSICAL REVIEW LETTERS (2019)

Article Materials Science, Multidisciplinary

Flat bands in twisted double bilayer graphene

Narasimha Raju Chebrolu et al.

PHYSICAL REVIEW B (2019)

Article Materials Science, Multidisciplinary

Band structure and topological properties of twisted double bilayer graphene

Mikito Koshino

PHYSICAL REVIEW B (2019)

Article Multidisciplinary Sciences

Unconventional superconductivity in magic-angle graphene superlattices

Yuan Cao et al.

NATURE (2018)

Article Physics, Multidisciplinary

Edge transport in the trivial phase of InAs/GaSb

Fabrizio Nichele et al.

NEW JOURNAL OF PHYSICS (2016)

Review Physics, Multidisciplinary

Electronic properties of graphene-based bilayer systems

A. V. Rozhkov et al.

PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS (2016)

Article Materials Science, Multidisciplinary

Energy levels of bilayer graphene quantum dots

D. R. da Costa et al.

PHYSICAL REVIEW B (2015)

Article Multidisciplinary Sciences

Chemical potential and quantum Hall ferromagnetism in bilayer graphene

Kayoung Lee et al.

SCIENCE (2014)

Article Physics, Multidisciplinary

Direct Measurement of the Fermi Energy in Graphene Using a Double-Layer Heterostructure

Seyoung Kim et al.

PHYSICAL REVIEW LETTERS (2012)

Article Multidisciplinary Sciences

Moire bands in twisted double-layer graphene

Rafi Bistritzer et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2011)

Article Multidisciplinary Sciences

Quantum spin hall insulator state in HgTe quantum wells

Markus Koenig et al.

SCIENCE (2007)