4.8 Article

Twin-field quantum key distribution over 830-km fibre

期刊

NATURE PHOTONICS
卷 16, 期 2, 页码 154-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41566-021-00928-2

关键词

-

资金

  1. National Key Research and Development Program of China [2018YFA0306400]
  2. National Natural Science Foundation of China [61622506, 61627820, 61822115, 61875181, 61675189]
  3. 111 Project [D20031]
  4. Anhui Initiative in Quantum Information Technologies

向作者/读者索取更多资源

The research team presents an experimental QKD system that can tolerate channel loss and achieve a secure distance of 833.8 km, setting a new record for fibre-based QKD. The optimized protocol and high-quality setup result in a significantly higher secure key rate compared to previous records over similar distances. This breakthrough marks a significant step towards establishing reliable and efficient terrestrial quantum-secure networks over a scale of 1,000 km.
Quantum key distribution (QKD) provides a promising solution for sharing information-theoretic secure keys between remote peers with physics-based protocols. According to the law of quantum physics, the photons carrying signals cannot be amplified or relayed via classical optical techniques to maintain quantum security. As a result, the transmission loss of the channel limits its achievable distance, and this has been a huge barrier towards building large-scale quantum-secure networks. Here we present an experimental QKD system that could tolerate a channel loss beyond 140 dB and obtain a secure distance of 833.8 km, setting a new record for fibre-based QKD. Furthermore, the optimized four-phase twin-field protocol and high-quality set-up make its secure key rate more than two orders of magnitude greater than previous records over similar distances. Our results mark a breakthrough towards building reliable and efficient terrestrial quantum-secure networks over a scale of 1,000 km. Twin-field (TF) quantum key distribution (QKD) over a secure distance of 833.8 km is demonstrated even in the finite-size regime. To this end, an optimized four-phase TF-QKD protocol and a high-speed low-noise TF-QKD system are developed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据