4.4 Article

Metagenomic diagnostics for the simultaneous detection of multiple pathogens in human stool specimens from Cote d'Ivoire: a proof-of-concept study

期刊

INFECTION GENETICS AND EVOLUTION
卷 40, 期 -, 页码 389-397

出版社

ELSEVIER
DOI: 10.1016/j.meegid.2015.08.044

关键词

Bacterial strain typing; Cote d'Ivoire; Diarrhea; Metagenomics; Pathobiome; Resistome

资金

  1. armasuisse project ARAMIS [2011/22-16/353003285]
  2. European Union [260260]

向作者/读者索取更多资源

Background: The intestinal microbiome is a complex community and its role in influencing human health is poorly understood. While conventional microbiology commonly attributes digestive disorders to a single microorganism, a metagenomic approach can detect multiple pathogens simultaneously and might elucidate the role of microbial communities in the pathogenesis of intestinal diseases. We present a proof-of-concept that a shotgun metagenomic approach provides useful information on the diverse composition of intestinal pathogens and antimicrobial resistance profiles in human stool samples. Methods: In October 2012, we obtained stool specimens from patients with persistent diarrhea in south Cote d'Ivoire. Four stool samples were purposefully selected and subjected to microscopy, multiplex polymerase chain reaction (PCR), and a metagenomic approach. For the latter, we employed the National Center for Biotechnology Information nucleotide database and screened for 36 pathogenic organisms (bacteria, helminths, intestinal protozoa, and viruses) that may cause digestive disorders. We further characterized the bacterial population and the prevailing resistance patterns by comparing our metagenomic datasets with a genome-specific marker database and with a comprehensive antibiotic resistance database. Results: In the four patients, the metagenomic approach identified between eight and 11 pathogen classes that potentially cause digestive disorders. For bacterial pathogens, the diagnostic agreement between multiplex PCR and metagenomics was high; yet, metagenomics diagnosed several bacteria not detected by multiplex PCR. In contrast, some of the helminth and intestinal protozoa infections detected by microscopy were missed by metagenomics. The antimicrobial resistance analysis revealed the presence of genes conferring resistance to several commonly used antibiotics. Conclusions: A metagenomic approach provides detailed information on the presence and diversity of pathogenic organisms in human stool samples. Metagenomic studies allow for in-depth molecular characterization such as the antimicrobial resistance status, which may be useful to develop setting-specific treatment algorithms. While metagenomic approaches remain challenging, the benefits of gaining new insights into intestinal microbial communities call for a broader application in epidemiologic studies. Trial registration: ISRCTN86951400. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据