4.8 Article

Stabilization of intermediate spin states in mixed-valent diiron dichalcogenide complexes

期刊

NATURE CHEMISTRY
卷 14, 期 3, 页码 328-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41557-021-00853-5

关键词

-

资金

  1. Max Planck Society

向作者/读者索取更多资源

This article investigates the electronic structure and spin states of mixed-valent iron-sulfur dimers and discovers a new interaction that can stabilize high spin states. By studying a series of mixed-valent complexes, complex interactions between antiferromagnetic coupling, Heisenberg double-exchange, and vibronic coupling are revealed.
The electronic structure and ground spin states, S, observed for mixed-valent iron-sulfur dimers (Fe-II-Fe-III) are typically determined by the Heisenberg exchange interaction, J, that couples the magnetic interaction of the two metal centres either ferromagnetically (J > 0, S = 9/2) or antiferromagnetically (J < 0, S = 1/2). In the case of antiferromagnetically coupled iron centres, stabilization of the high-spin S = 9/2 ground state is also feasible through a Heisenberg double-exchange interaction, B, which lifts the degeneracy of the Heisenberg spin states. This theorem also predicts intermediate spin states for mixed-valent dimers, but those have so far remained elusive. Herein, we describe the structural, electron paramagnetic resonance and Mossbauer spectroscopic, and magnetic characterization of a series of mixed-valent complexes featuring [Fe(2)Q(2)](+) (Q = S2-, Se2-, Te2-), where the Se and Te complexes favour S = 3/2 spin states. The incorporation of heavier chalcogenides in this series reveals a delicate balance of antiferromagnetic coupling, Heisenberg double-exchange and vibronic coupling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据