4.8 Article

Deep physical neural networks trained with backpropagation

期刊

NATURE
卷 601, 期 7894, 页码 549-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41586-021-04223-6

关键词

-

资金

  1. NTT Research
  2. National Science Foundation [CCF-1918549]
  3. Mong Fellowships from Cornell Neurotech

向作者/读者索取更多资源

The study introduced a hybrid in situ-in silico algorithm called physics-aware training, which applies backpropagation to train controllable physical systems for deep physical neural networks. By demonstrating the training of diverse physical neural networks in areas like optics, mechanics, and electronics to perform audio and image classification tasks, the research showcased the universality and effectiveness of the approach.
Deep-learning models have become pervasive tools in science and engineering. However, their energy requirements now increasingly limit their scalability(1). Deep-learning accelerators(2-9) aim to perform deep learning energy-efficiently, usually targeting the inference phase and often by exploiting physical substrates beyond conventional electronics. Approaches so far(10-22) have been unable to apply the backpropagation algorithm to train unconventional novel hardware in situ. The advantages of backpropagation have made it the de facto training method for large-scale neural networks, so this deficiency constitutes a major impediment. Here we introduce a hybrid in situ-in silico algorithm, called physics-aware training, that applies backpropagation to train controllable physical systems. Just as deep learning realizes computations with deep neural networks made from layers of mathematical functions, our approach allows us to train deep physical neural networks made from layers of controllable physical systems, even when the physical layers lack any mathematical isomorphism to conventional artificial neural network layers. To demonstrate the universality of our approach, we train diverse physical neural networks based on optics, mechanics and electronics to experimentally perform audio and image classification tasks. Physics-aware training combines the scalability of backpropagation with the automatic mitigation of imperfections and noise achievable with in situ algorithms. Physical neural networks have the potential to perform machine learning faster and more energy-efficiently than conventional electronic processors and, more broadly, can endow physical systems with automatically designed physical functionalities, for example, for robotics(23-26), materials(27-29) and smart sensors(30-32).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据