4.8 Article

Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Cell Biology

A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice

David R. Martinez et al.

Summary: Severe acute respiratory syndrome coronaviruses (SARS-CoVs), including SARS-CoV-2 variants, can cause deadly infections. A human antibody called DH1047 has been shown to neutralize SARS-CoV and various coronaviruses, and protect against SARS-CoV-2 B.1.351 infection in mice. The study suggests that DH1047 could be a broadly protective antibody and a potential target for a universal sarbecovirus vaccine.

SCIENCE TRANSLATIONAL MEDICINE (2022)

Article Microbiology

Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition

Allison J. Greaney et al.

Summary: Antibodies targeting the SARS-CoV-2 spike receptor-binding domain (RBD) are key in neutralizing antibody responses, and a deep mutational scanning method was used to assess the impact of all amino-acid mutations in the RBD on antibody binding with 10 human monoclonal antibodies. The study identified the clustered escape mutations in different surfaces of the RBD that correspond to structurally defined antibody epitopes, showing that even antibodies targeting the same surface can have distinct escape mutations.

CELL HOST & MICROBE (2021)

Article Multidisciplinary Sciences

Prospective mapping of viral mutations that escape antibodies used to treat COVID-19

Tyler N. Starr et al.

Summary: Research has found that mutations in the receptor binding domain (RBD) of SARS-CoV-2 may potentially escape the action of the REGN-COV2 cocktail, providing important information for interpreting mutations observed during viral surveillance.

SCIENCE (2021)

Article Cell Biology

Stereotypic neutralizing VH antibodies against SARS-CoV-2 spike protein receptor binding domain in patients with COVID-19 and healthy individuals

Sang Il Kim et al.

Summary: SARS-CoV-2 patients have stereotypic antibody clonotypes targeting the virus spike protein, which may provide protective immunity by neutralizing the virus. These clonotypes also exist in some healthy individuals, suggesting they can develop from naïve B cells rather than memory B cells from prior exposure to similar viruses.

SCIENCE TRANSLATIONAL MEDICINE (2021)

Article Biochemistry & Molecular Biology

SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape

Qianqian Li et al.

Summary: The 501Y.V2 variants of SARS-CoV-2 with multiple mutations are rapidly spreading from South Africa to other countries, showing reduced susceptibility to neutralizing antibodies and potential compromise of monoclonal antibodies and vaccines. Enhanced infectivity in murine ACE2-overexpressing cells suggests the possibility of transmission to mice.
Article Biochemistry & Molecular Biology

The antigenic anatomy of SARS-CoV-2 receptor binding domain

Wanwisa Dejnirattisai et al.

Summary: Antibodies play a crucial role in immune protection against SARS-CoV-2, with some being used as therapeutics. A study identified 377 human monoclonal antibodies, focusing on 80 that bind the virus spike, and found that most highly inhibitory antibodies can block the virus-receptor interaction. Novel binding modes of potent inhibitory antibodies were discovered, showing potential for prophylactic or therapeutic use in animal models.
Article Microbiology

Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite

Gabriele Cerutti et al.

Summary: Structural analysis revealed that seven potent NTD-directed neutralizing antibodies target a common surface on NTD, forming a single supersite different from the recognition pattern of RBD-directed antibodies.

CELL HOST & MICROBE (2021)

News Item Multidisciplinary Sciences

HEAVILY MUTATED OMICRON VARIANT PUTS SCIENTISTS ON ALERT

Ewen Callaway

NATURE (2021)

Article Biochemistry & Molecular Biology

N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2

Matthew McCallum et al.

Summary: The study identifies 41 human monoclonal antibodies that recognize the N-terminal domain of the SARS-CoV-2 spike protein and exhibit strong neutralizing activity. These antibodies inhibit cell-to-cell fusion, activate effector functions, and protect animals from virus challenge, highlighting the importance of NTD-specific neutralizing antibodies for protective immunity and vaccine development. Several SARS-CoV-2 variants with mutations in the NTD supersite suggest ongoing selective pressure on the virus.
Article Biochemistry & Molecular Biology

B cell genomics behind cross-neutralization of SARS-CoV-2 variants and SARS-CoV

Johannes F. Scheid et al.

Summary: Monoclonal antibodies play a crucial role in vaccine and therapeutic development against SARS-CoV-2. By utilizing single-cell technologies and mAb structures, this study identified distinct B cell populations producing potent neutralizing antibodies, providing insights into their recognition mechanisms and cross-neutralizing capabilities against various coronavirus variants.
Article Cell Biology

The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates

Bryan E. Jones et al.

Summary: LY-CoV555 is a novel neutralizing antibody derived from a convalescent patient with COVID-19, showing high affinity binding, potent inhibition of ACE2 binding, and strong neutralizing activity. This antibody has entered clinical trials and is being evaluated for various COVID-19 prevention and treatment indications.

SCIENCE TRANSLATIONAL MEDICINE (2021)

Article Cell Biology

Humoral immune response to circulating SARS-CoV-2 variants elicited by inactivated and RBD-subunit vaccines

Yunlong Cao et al.

Summary: The study found that the diversity of anti-RBD NAbs plays a major role in neutralization against SARS-CoV-2 variants, especially 501Y.V2, with E484K being the dominant cause of neutralization reduction. Specific antibodies respond differently to mutations in RBD variants, with lower diversity observed in NTD antibodies. RBD-subunit vaccinees exhibit higher tolerance to neutralization against variants, while extending the interval between doses of ZF2001 enhances neutralizing activity and tolerance to variants.

CELL RESEARCH (2021)

Article Immunology

A SARS-CoV-2 antibody broadly neutralizes SARS-related coronaviruses and variants by coordinated recognition of a virus-vulnerable site

Taishi Onodera et al.

Summary: A potent neutralizing antibody targeting the spike protein receptor-binding site was identified, which can effectively neutralize various SARS-related coronaviruses and their variants, through coordinated recognition of non-RBS conserved sites and RBS. The antibody's ability to reduce virus titers and morbidity through low-dose therapeutic treatment in hamsters suggests potential for therapeutic and vaccine design to combat broad spectrum of coronaviruses.

IMMUNITY (2021)

Article Multidisciplinary Sciences

Broad sarbecovirus neutralization by a human monoclonal antibody

M. Alejandra Tortorici et al.

Summary: The emergence of SARS-CoV-2 variants and recurrent spillovers of coronaviruses into the human population emphasize the need for broadly neutralizing antibodies to prevent future zoonotic infections. The human monoclonal antibody S2X259 has shown promising results in neutralizing various forms of SARS-CoV-2 and potentially zoonotic sarbecoviruses by inhibiting the binding of ACE2 to the receptor-binding domain. This antibody targets a key antigenic site and may guide the design of vaccines effective against all sarbecoviruses.

NATURE (2021)

Article Multidisciplinary Sciences

SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape

Tyler N. Starr et al.

Summary: An ideal therapeutic anti-SARS-CoV-2 antibody should have resistance to viral escape, activity against diverse sarbecoviruses, and provide high protection through viral neutralization and effector functions. Studies have found a trade-off between in vitro neutralization potency and breadth of sarbecovirus binding in SARS-CoV-2 antibodies targeting the RBD, but identified some antibodies with exceptional sarbecovirus breadth and resistance to SARS-CoV-2 escape.

NATURE (2021)

Review Microbiology

SARS-CoV-2 variants, spike mutations and immune escape

William T. Harvey et al.

Summary: The evolution of SARS-CoV-2 has been characterized by the emergence of mutations and variants that impact virus characteristics. Manufacturers are preparing for possible updates to vaccines in response to changes in the virus population, and it is crucial to monitor genetic and antigenic changes alongside experiments to understand the impacts of mutations.

NATURE REVIEWS MICROBIOLOGY (2021)

Article Medicine, General & Internal

Pan-Sarbecovirus Neutralizing Antibodies in BNT162b2-Immunized SARS-CoV-1 Survivors

Chee-Wah Tan et al.

Summary: Survivors of SARS-CoV-1 infection who received the BNT162b2 mRNA vaccine produced potent cross-clade pan-sarbecovirus neutralizing antibodies, capable of neutralizing various variants of concern and potential human-infecting coronaviruses, indicating the feasibility of a pan-sarbecovirus vaccine strategy.

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Article Multidisciplinary Sciences

Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants

Meng Yuan et al.

Summary: Mutations in the RBS residues of new variant strains of the coronavirus can affect the binding and neutralizing effects of antibodies, but have little impact on antibodies targeting more conserved neutralizing sites.

SCIENCE (2021)

Article Microbiology

Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail

Jinhui Dong et al.

Summary: Structural analysis of two human monoclonal antibodies forming the antibody cocktail AZD7442, when bound to the RBD of SARS-CoV-2, demonstrates strong neutralization of variants of concern. Genetic and structural basis of neutralization has been defined, revealing crucial binding residues and positions of concern for virus escape. These germ line-encoded antibody features enable recognition of SARS-CoV-2 spike RBD and showcase the utility of cocktail AZD7442 in neutralizing emerging variant viruses.

NATURE MICROBIOLOGY (2021)

Article Cell Biology

Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016

Tyler N. Starr et al.

Summary: The study mapped mutations to the SARS-CoV-2 spike receptor-binding domain that escape binding by certain monoclonal antibodies. These mutations are concentrated in specific lineages of SARS-CoV-2. The authors suggest diversifying the epitopes targeted by antibodies and antibody cocktails to make them more resilient to SARS-CoV-2 antigenic evolution.

CELL REPORTS MEDICINE (2021)

Article Multidisciplinary Sciences

A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2

Rui Shi et al.

NATURE (2020)

Article Multidisciplinary Sciences

Human neutralizing antibodies elicited by SARS-CoV-2 infection

Bin Ju et al.

NATURE (2020)

Article Multidisciplinary Sciences

Cross-neutralization ofSARS-CoV-2 by a human monoclonal SARS-CoV antibody

Dora Pinto et al.

NATURE (2020)

Article Biochemical Research Methods

CoV-AbDab: the Coronavirus Antibody Database

Matthew I J Raybould et al.

BIOINFORMATICS (2020)

Article Multidisciplinary Sciences

Convergent antibody responses to SARS-CoV-2 in convalescent individuals

Davide F. Robbiani et al.

NATURE (2020)

Article Multidisciplinary Sciences

Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike

Lihong Liu et al.

NATURE (2020)

Article Multidisciplinary Sciences

Potently neutralizing and protective human antibodies against SARS-CoV-2

Seth J. Zost et al.

NATURE (2020)

Article Multidisciplinary Sciences

Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy

Hongjing Gu et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail

Johanna Hansen et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability

Philip J. M. Brouwer et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

Structural basis of a shared antibody response to SARS-CoV-2

Meng Yuan et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies

Christopher O. Barnes et al.

NATURE (2020)

Article Multidisciplinary Sciences

Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms

M. Alejandra Tortorici et al.

SCIENCE (2020)

Article Biochemical Research Methods

High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method

R. Daniel Gietz et al.

NATURE PROTOCOLS (2007)