4.6 Article

Application of the WRF model rainfall product for the localized flood hazard modeling in a data-scarce environment

期刊

NATURAL HAZARDS
卷 111, 期 2, 页码 1813-1844

出版社

SPRINGER
DOI: 10.1007/s11069-021-05117-6

关键词

Alternating-block design storm; High-intensity rainfall event; IDF curve; Flood hazard modeling; Potential gridcell events; Representative gridcell events; WRF model; Quantile expression of cumulative rainfall

资金

  1. University of Twente

向作者/读者索取更多资源

Urban flood hazard models require high-resolution rainfall data for better simulation of flood dynamics. However, such data are scarce in many developing countries. In this study, a numerical weather prediction model is used to develop design storms based on high-resolution simulated rainfall events. The comparison with traditional design storms shows that the new approach provides more accurate results for flood hazard assessment.
Urban flood hazard model needs rainfall with high spatial and temporal resolutions for flood hazard analysis to better simulate flood dynamics in complex urban environments. However, in many developing countries, such high-quality data are scarce. Data that exist are also spatially biased toward airports and urban areas in general, where these locations may not represent flood-prone areas. One way to gain insight into the rainfall data and its spatial patterns is through numerical weather prediction models. As their performance improves, these might serve as alternative rainfall data sources for producing optimal design storms required for flood hazard modeling in data-scarce areas. To gain such insight, we developed Weather Research and Forecasting (WRF) design storms based on the spatial distribution of high-intensity rainfall events simulated at high spatial and temporal resolutions. Firstly, three known storm events (i.e., 25 June 2012, 13 April 2016, and 16 April 2016) that caused the flood hazard in the study area are simulated using the WRF model. Secondly, the potential gridcell events that are able to trigger the localized flood hazard in the catchment are selected and translated to the WRF design storm form using a quantile expression. Finally, three different WRF design storms per event are constructed: Lower, median, and upper quantiles. The results are compared with the design storms of 2- and 10-year return periods constructed based on the alternating-block method to evaluate differences from a flood hazard assessment point of view. The method is tested in the case of Kampala city, Uganda. The comparison of the design storms indicates that the WRF model design storms properties are in good agreement with the alternating-block design storms. Mainly, the differences between the produced flood characteristics (e.g., hydrographs and the number of flood gird cells) when using WRF lower quantiles (WRFLs) versus 2-year and WRF upper quantiles (WRFUs) versus 10-year alternating-block storms are very minimal. The calculated aggregated performance statistics (F scores) for the simulated flood extent of WRF design storms benchmarked with the alternating-block storms also produced a higher score of 0.9 for both WRF lower quantiles versus 2-year and WRF upper quantile versus 10-year alternating-block storm. The result suggested that the WRF design storms can be considered an added value for flood hazard assessment as they are closer to real systems causing rainfall. However, more research is needed on which area can be considered as a representative area in the catchment. The result has practical application for flood risk assessment, which is the core of integrated flood management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据